Contrasting Historical Trends in Equatorial Indian Ocean Zonal Sea Surface Temperature Gradient in CMIP6 Models

IF 3.5 3区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES
Mohan Soumya, Suresh Gopika
{"title":"Contrasting Historical Trends in Equatorial Indian Ocean Zonal Sea Surface Temperature Gradient in CMIP6 Models","authors":"Mohan Soumya,&nbsp;Suresh Gopika","doi":"10.1002/joc.8832","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The zonal sea surface temperature (SST) gradient in the tropical Indian Ocean (TIO) has been assessed using 50 climate models. Among these, 38 models exhibit an east–west negative gradient trend, indicating an intensified warming pattern in the Western Equatorial Indian Ocean (WEIO). This strong inter-model spread in representing the zonal SST gradient in the TIO mainly arises from the large variability of SST trends in the eastern Indian Ocean. The multi-model mean shows a westward SST gradient trend, which is approximately four-fold higher than the observed zonal gradient trend. However, models such as E3SM-1-1 and NESM3 realistically represent SST trends in both the eastern and western equatorial Indian Ocean regions, thereby capturing SST gradients close to observation. To investigate gradient variability and the underlying mechanisms, we categorised models into two groups, each comprising five models. The first group, comprising CESM2-FV2, EC-Earth3-Veg-LR, EC-Earth3-Veg, CAS-ESM2.0, and CIESM, demonstrates pronounced negative SST gradient trends. Conversely, the second group, consisting of CESM2-WACCM-FV2, CESM2, CESM2-WACCM, CMCC-CM2-SR5, and MIROC6, exhibits relatively subdued positive gradients, attributable to the slower warming of the WEIO. The inconsistent warming pattern formation, associated with eastward (westward) intensification of SST trends in positive (negative) gradient models, leads to larger gradient magnitudes compared to observations. The wind-evaporation-SST (WES) feedback plays a predominant role in shaping the SST warming pattern in both groups of models, while the mean state SST bias has a secondary role. The Bjerknes feedback is weak in positive zonal SST gradient models, whereas both Bjerknes and WES feedbacks act to enhance the zonal SST gradient in models with negative gradient trends. This study underscores the dominant role of air-sea interaction processes in forming SST warming patterns and highlights the unrealistic zonal SST gradient in the equatorial Indian Ocean.</p>\n </div>","PeriodicalId":13779,"journal":{"name":"International Journal of Climatology","volume":"45 8","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Climatology","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/joc.8832","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The zonal sea surface temperature (SST) gradient in the tropical Indian Ocean (TIO) has been assessed using 50 climate models. Among these, 38 models exhibit an east–west negative gradient trend, indicating an intensified warming pattern in the Western Equatorial Indian Ocean (WEIO). This strong inter-model spread in representing the zonal SST gradient in the TIO mainly arises from the large variability of SST trends in the eastern Indian Ocean. The multi-model mean shows a westward SST gradient trend, which is approximately four-fold higher than the observed zonal gradient trend. However, models such as E3SM-1-1 and NESM3 realistically represent SST trends in both the eastern and western equatorial Indian Ocean regions, thereby capturing SST gradients close to observation. To investigate gradient variability and the underlying mechanisms, we categorised models into two groups, each comprising five models. The first group, comprising CESM2-FV2, EC-Earth3-Veg-LR, EC-Earth3-Veg, CAS-ESM2.0, and CIESM, demonstrates pronounced negative SST gradient trends. Conversely, the second group, consisting of CESM2-WACCM-FV2, CESM2, CESM2-WACCM, CMCC-CM2-SR5, and MIROC6, exhibits relatively subdued positive gradients, attributable to the slower warming of the WEIO. The inconsistent warming pattern formation, associated with eastward (westward) intensification of SST trends in positive (negative) gradient models, leads to larger gradient magnitudes compared to observations. The wind-evaporation-SST (WES) feedback plays a predominant role in shaping the SST warming pattern in both groups of models, while the mean state SST bias has a secondary role. The Bjerknes feedback is weak in positive zonal SST gradient models, whereas both Bjerknes and WES feedbacks act to enhance the zonal SST gradient in models with negative gradient trends. This study underscores the dominant role of air-sea interaction processes in forming SST warming patterns and highlights the unrealistic zonal SST gradient in the equatorial Indian Ocean.

Abstract Image

CMIP6模式下赤道印度洋纬向海表温度梯度历史趋势对比
利用50种气候模式评估了热带印度洋(TIO)的纬向海表温度梯度。其中38个模式呈现东西负梯度趋势,表明西赤道印度洋(WEIO)的增温趋势加剧。这种表现东印度洋海温纬向梯度的模式间传播主要源于东印度洋海温趋势的大变异性。多模式平均海温梯度呈现向西的趋势,约为纬向梯度的4倍。然而,E3SM-1-1和NESM3等模式真实地反映了东、西赤道印度洋区域的海温趋势,从而捕获了接近观测值的海温梯度。为了研究梯度变异性及其潜在机制,我们将模型分为两组,每组包括五个模型。第一组由CESM2-FV2、EC-Earth3-Veg- lr、EC-Earth3-Veg、CAS-ESM2.0和CIESM组成,表现出明显的负海温梯度趋势。相反,第二组由CESM2- waccm - fv2、CESM2- waccm、CESM2- waccm、ccc - cm2 - sr5和MIROC6组成,由于WEIO变暖较慢,其正梯度相对较弱。与正(负)梯度模式海温趋势东(西)增强相关的不一致增温型的形成导致了比观测值更大的梯度幅度。在两组模式中,风-蒸发-海温(WES)反馈对海温增温型的形成起主导作用,平均状态海温偏置起次要作用。正纬向海温梯度模式的Bjerknes反馈较弱,负纬向海温梯度模式的Bjerknes反馈和WES反馈都增强了纬向海温梯度。本研究强调了海气相互作用过程在海温增温型形成中的主导作用,并强调了赤道印度洋海温纬向梯度的不现实。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Climatology
International Journal of Climatology 地学-气象与大气科学
CiteScore
7.50
自引率
7.70%
发文量
417
审稿时长
4 months
期刊介绍: The International Journal of Climatology aims to span the well established but rapidly growing field of climatology, through the publication of research papers, short communications, major reviews of progress and reviews of new books and reports in the area of climate science. The Journal’s main role is to stimulate and report research in climatology, from the expansive fields of the atmospheric, biophysical, engineering and social sciences. Coverage includes: Climate system science; Local to global scale climate observations and modelling; Seasonal to interannual climate prediction; Climatic variability and climate change; Synoptic, dynamic and urban climatology, hydroclimatology, human bioclimatology, ecoclimatology, dendroclimatology, palaeoclimatology, marine climatology and atmosphere-ocean interactions; Application of climatological knowledge to environmental assessment and management and economic production; Climate and society interactions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信