{"title":"Transient and Steady-State Dislocation Creep of Olivine Controlled by Dislocation Interactions at the Isostress Endmember","authors":"David Wallis, Thomas Breithaupt, Taco Broerse","doi":"10.1029/2024JB030606","DOIUrl":null,"url":null,"abstract":"<p>The rheological behavior of olivine deforming by dislocation creep controls geodynamic processes that involve steady-state flow or transient viscosity evolution. Longstanding rheological models applied to both contexts assume that dislocation creep of olivine aggregates occurs close to the isostrain endmember with each grain deforming to the same strain but supporting different stress. Here, we test this assumption by constructing isostrain and isostress models based on flow laws for single crystals and comparing them to rheological data from aggregates. This analysis reveals that strain rates measured on olivine aggregates agree with those predicted by the isostress model but are an order of magnitude faster than those predicted by the isostrain model. When extrapolated to conditions typical of the shallow upper mantle, the isostress model predicts steady-state viscosities that are one to three orders of magnitude less than those predicted by the isostrain model. Furthermore, deformation close to the isostress endmember implies that transient creep occurs predominantly by dislocation interactions, suggesting viscosity changes that are approximately one order of magnitude greater than those predicted previously based on grain interactions associated with the isostrain model.</p>","PeriodicalId":15864,"journal":{"name":"Journal of Geophysical Research: Solid Earth","volume":"130 6","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JB030606","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Solid Earth","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JB030606","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The rheological behavior of olivine deforming by dislocation creep controls geodynamic processes that involve steady-state flow or transient viscosity evolution. Longstanding rheological models applied to both contexts assume that dislocation creep of olivine aggregates occurs close to the isostrain endmember with each grain deforming to the same strain but supporting different stress. Here, we test this assumption by constructing isostrain and isostress models based on flow laws for single crystals and comparing them to rheological data from aggregates. This analysis reveals that strain rates measured on olivine aggregates agree with those predicted by the isostress model but are an order of magnitude faster than those predicted by the isostrain model. When extrapolated to conditions typical of the shallow upper mantle, the isostress model predicts steady-state viscosities that are one to three orders of magnitude less than those predicted by the isostrain model. Furthermore, deformation close to the isostress endmember implies that transient creep occurs predominantly by dislocation interactions, suggesting viscosity changes that are approximately one order of magnitude greater than those predicted previously based on grain interactions associated with the isostrain model.
期刊介绍:
The Journal of Geophysical Research: Solid Earth serves as the premier publication for the breadth of solid Earth geophysics including (in alphabetical order): electromagnetic methods; exploration geophysics; geodesy and gravity; geodynamics, rheology, and plate kinematics; geomagnetism and paleomagnetism; hydrogeophysics; Instruments, techniques, and models; solid Earth interactions with the cryosphere, atmosphere, oceans, and climate; marine geology and geophysics; natural and anthropogenic hazards; near surface geophysics; petrology, geochemistry, and mineralogy; planet Earth physics and chemistry; rock mechanics and deformation; seismology; tectonophysics; and volcanology.
JGR: Solid Earth has long distinguished itself as the venue for publication of Research Articles backed solidly by data and as well as presenting theoretical and numerical developments with broad applications. Research Articles published in JGR: Solid Earth have had long-term impacts in their fields.
JGR: Solid Earth provides a venue for special issues and special themes based on conferences, workshops, and community initiatives. JGR: Solid Earth also publishes Commentaries on research and emerging trends in the field; these are commissioned by the editors, and suggestion are welcome.