Sustainable Water Decontamination: Advanced High-Valent Iron Active Species-Driven Peroxymonosulfate Activation for Global Challenges

CleanMat Pub Date : 2025-05-04 DOI:10.1002/clem.70001
Junpeng Guo, Miao Lei, Ling Yan, Junhang Huang, Chang Liu, Li Ye, BoLin Li, Xingtao Xu, Ye Li
{"title":"Sustainable Water Decontamination: Advanced High-Valent Iron Active Species-Driven Peroxymonosulfate Activation for Global Challenges","authors":"Junpeng Guo,&nbsp;Miao Lei,&nbsp;Ling Yan,&nbsp;Junhang Huang,&nbsp;Chang Liu,&nbsp;Li Ye,&nbsp;BoLin Li,&nbsp;Xingtao Xu,&nbsp;Ye Li","doi":"10.1002/clem.70001","DOIUrl":null,"url":null,"abstract":"<p>High-valent iron active species (HVIAS)-driven peroxymonosulfate (PMS) activation has emerged as a transformative approach in environmental remediation. This review systematically deciphers the mechanistic evolution and characterization advances of HVIAS generation: non-radical-dominated electron transfer pathways have been rigorously elucidated through in situ X-ray absorption spectroscopy (XAS) and Mössbauer spectroscopy. In contaminant elimination, the HVIAS-PMS system achieves 1-2 orders of magnitude higher degradation kinetics than conventional radical-based routes via targeted oxidation of electron-rich moieties in antibiotics. To address real-world wastewater complexity, 3D-structured and 3D-printed catalytic materials enhance HVIAS generation efficiency and stability through confinement effects and mass transport optimization. Nevertheless, critical challenges—including C-F bond cleavage in PFAS, co-existing matrix interference, and byproduct toxicity—demand urgent re-evaluation for practical implementation. Future endeavors should prioritize smart-responsive catalyst design, multi-omics-driven toxicity profiling, global byproduct database establishment, and cross-scale integration of HVIAS-PMS with renewable energy technologies. This perspective presents cutting-edge advancements in HVIAS-PMS systems, provides a multidimensional framework bridging fundamental research and applications for sustainable water decontamination, and discusses the limitations as well as prospects.</p>","PeriodicalId":100258,"journal":{"name":"CleanMat","volume":"2 2","pages":"88-103"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/clem.70001","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CleanMat","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/clem.70001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

High-valent iron active species (HVIAS)-driven peroxymonosulfate (PMS) activation has emerged as a transformative approach in environmental remediation. This review systematically deciphers the mechanistic evolution and characterization advances of HVIAS generation: non-radical-dominated electron transfer pathways have been rigorously elucidated through in situ X-ray absorption spectroscopy (XAS) and Mössbauer spectroscopy. In contaminant elimination, the HVIAS-PMS system achieves 1-2 orders of magnitude higher degradation kinetics than conventional radical-based routes via targeted oxidation of electron-rich moieties in antibiotics. To address real-world wastewater complexity, 3D-structured and 3D-printed catalytic materials enhance HVIAS generation efficiency and stability through confinement effects and mass transport optimization. Nevertheless, critical challenges—including C-F bond cleavage in PFAS, co-existing matrix interference, and byproduct toxicity—demand urgent re-evaluation for practical implementation. Future endeavors should prioritize smart-responsive catalyst design, multi-omics-driven toxicity profiling, global byproduct database establishment, and cross-scale integration of HVIAS-PMS with renewable energy technologies. This perspective presents cutting-edge advancements in HVIAS-PMS systems, provides a multidimensional framework bridging fundamental research and applications for sustainable water decontamination, and discusses the limitations as well as prospects.

Abstract Image

可持续水净化:先进的高价铁活性物质驱动的过氧单硫酸盐活化应对全球挑战
高价铁活性物质(HVIAS)驱动的过氧单硫酸盐(PMS)活化已成为环境修复的一种变革性方法。本文系统地解读了HVIAS生成的机制演变和表征进展:通过原位x射线吸收光谱(XAS)和Mössbauer光谱严格阐明了非自由基主导的电子转移途径。在污染物消除方面,HVIAS-PMS系统通过靶向氧化抗生素中的富电子部分,实现了比传统基于自由基的途径高1-2个数量级的降解动力学。为了解决现实世界废水的复杂性,3d结构和3d打印的催化材料通过约束效应和质量传输优化来提高HVIAS的生成效率和稳定性。然而,关键的挑战——包括PFAS中C-F键的断裂、共存的基质干扰和副产物的毒性——需要紧急重新评估以进行实际实施。未来的努力应优先考虑智能响应催化剂设计、多组学驱动的毒性分析、全球副产物数据库建立以及HVIAS-PMS与可再生能源技术的跨规模集成。这一观点介绍了HVIAS-PMS系统的前沿进展,为可持续水净化的基础研究和应用提供了一个多维框架,并讨论了局限性和前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信