{"title":"Robust Output Feedback MPC of Antagonistic Pneumatic Artificial Muscle System","authors":"Huixing Yan, Hongqian Lu, Yefeng Yang, Yanming Fu","doi":"10.1049/cth2.70045","DOIUrl":null,"url":null,"abstract":"<p>Suspended constant force (SCF) control is a critical technology in suspended gravity offloading systems. However, inherent underactuation, unmodelled dynamics, and external disturbances can significantly degrade control performance and even compromise system stability. In this article, pneumatic artificial muscle (PAM) actuators are used as a replacement for traditional passive dampers to address the underactuation problem. Additionally, we propose a novel systematic robust output feedback model predictive control (ROFMPC) framework, which incorporates a radial basis function neural network (RBFNN)-based model compensator, a Luenberger state estimator, and a tube model predictive controller. The RBFNN-based model compensator compensates for unmodelled dynamics, while the Luenberger state estimator observes external disturbances. The model predictive controller then generates the optimal control sequence. Analytical results indicate that our designed SCF system encounters similar control challenges as those in antagonistic PAM (APAM). Therefore, sufficiently comprehensive numerical simulations and physical experiments are conducted on the APAM platform to verify the effectiveness of the proposed control framework. These results demonstrate that the proposed ROFMPC framework significantly improves force trajectory tracking performance for constant force control.</p>","PeriodicalId":50382,"journal":{"name":"IET Control Theory and Applications","volume":"19 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cth2.70045","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Control Theory and Applications","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cth2.70045","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Suspended constant force (SCF) control is a critical technology in suspended gravity offloading systems. However, inherent underactuation, unmodelled dynamics, and external disturbances can significantly degrade control performance and even compromise system stability. In this article, pneumatic artificial muscle (PAM) actuators are used as a replacement for traditional passive dampers to address the underactuation problem. Additionally, we propose a novel systematic robust output feedback model predictive control (ROFMPC) framework, which incorporates a radial basis function neural network (RBFNN)-based model compensator, a Luenberger state estimator, and a tube model predictive controller. The RBFNN-based model compensator compensates for unmodelled dynamics, while the Luenberger state estimator observes external disturbances. The model predictive controller then generates the optimal control sequence. Analytical results indicate that our designed SCF system encounters similar control challenges as those in antagonistic PAM (APAM). Therefore, sufficiently comprehensive numerical simulations and physical experiments are conducted on the APAM platform to verify the effectiveness of the proposed control framework. These results demonstrate that the proposed ROFMPC framework significantly improves force trajectory tracking performance for constant force control.
期刊介绍:
IET Control Theory & Applications is devoted to control systems in the broadest sense, covering new theoretical results and the applications of new and established control methods. Among the topics of interest are system modelling, identification and simulation, the analysis and design of control systems (including computer-aided design), and practical implementation. The scope encompasses technological, economic, physiological (biomedical) and other systems, including man-machine interfaces.
Most of the papers published deal with original work from industrial and government laboratories and universities, but subject reviews and tutorial expositions of current methods are welcomed. Correspondence discussing published papers is also welcomed.
Applications papers need not necessarily involve new theory. Papers which describe new realisations of established methods, or control techniques applied in a novel situation, or practical studies which compare various designs, would be of interest. Of particular value are theoretical papers which discuss the applicability of new work or applications which engender new theoretical applications.