{"title":"Cooperative Adaptive Formation Fault-Tolerant Neural Control for Multiple Quadrotors With Full-State Constraints","authors":"Rui Dai, Yadong Yang, Jianye Gong, Qikun Shen","doi":"10.1049/cth2.70042","DOIUrl":null,"url":null,"abstract":"<p>This paper investigates the cooperative time-varying formation fault-tolerant control problem for multiple quadrotors with unknown actuator faults and full state constraints. In order to ensure the safety and operability of quadrotors in the confined flight environment, a novel transformed function is first introduced to convert the original quadrotor systems into unconstrained equivalent systems, which increases the flexibility of the controller design. Then, a distributed kinematic control protocol and fault-tolerant dynamic control protocol using the adaptive neural networks estimation technique are developed to guarantee the cooperative time-varying formation of multiple quadrotors subject to uncertain parameters. Meanwhile, the unknown actuator loss of effectiveness and bias faults are compensated and the state variables of position subsystem and attitude subsystem can be maintained within the designed performance constraint sets even when actuator faults occur. Via Lyapunov stability theory, the cooperative formation fault-tolerant performance analysis is presented. The proposed control strategy is validated through simulations.</p>","PeriodicalId":50382,"journal":{"name":"IET Control Theory and Applications","volume":"19 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cth2.70042","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Control Theory and Applications","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cth2.70042","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper investigates the cooperative time-varying formation fault-tolerant control problem for multiple quadrotors with unknown actuator faults and full state constraints. In order to ensure the safety and operability of quadrotors in the confined flight environment, a novel transformed function is first introduced to convert the original quadrotor systems into unconstrained equivalent systems, which increases the flexibility of the controller design. Then, a distributed kinematic control protocol and fault-tolerant dynamic control protocol using the adaptive neural networks estimation technique are developed to guarantee the cooperative time-varying formation of multiple quadrotors subject to uncertain parameters. Meanwhile, the unknown actuator loss of effectiveness and bias faults are compensated and the state variables of position subsystem and attitude subsystem can be maintained within the designed performance constraint sets even when actuator faults occur. Via Lyapunov stability theory, the cooperative formation fault-tolerant performance analysis is presented. The proposed control strategy is validated through simulations.
期刊介绍:
IET Control Theory & Applications is devoted to control systems in the broadest sense, covering new theoretical results and the applications of new and established control methods. Among the topics of interest are system modelling, identification and simulation, the analysis and design of control systems (including computer-aided design), and practical implementation. The scope encompasses technological, economic, physiological (biomedical) and other systems, including man-machine interfaces.
Most of the papers published deal with original work from industrial and government laboratories and universities, but subject reviews and tutorial expositions of current methods are welcomed. Correspondence discussing published papers is also welcomed.
Applications papers need not necessarily involve new theory. Papers which describe new realisations of established methods, or control techniques applied in a novel situation, or practical studies which compare various designs, would be of interest. Of particular value are theoretical papers which discuss the applicability of new work or applications which engender new theoretical applications.