Metal Nitride Catalysts for Photoelectrochemical and Electrochemical Catalysis

IF 22.5
Hee Ryeong Kwon, Jin Wook Yang, Ho Won Jang
{"title":"Metal Nitride Catalysts for Photoelectrochemical and Electrochemical Catalysis","authors":"Hee Ryeong Kwon,&nbsp;Jin Wook Yang,&nbsp;Ho Won Jang","doi":"10.1002/EXP.20240013","DOIUrl":null,"url":null,"abstract":"<p>Metal nitrides have emerged as promising materials for photoelectrochemical and electrochemical catalysis due to their unique electronic properties and structural versatility, offering high electrical conductivity and abundant active sites for catalytic reactions. Herein, we comprehensively explore the characteristics, synthesis, and application of diverse metal nitride catalysts. Fundamental features and catalytic advantages of metal nitrides are presented in terms of electronic structure and surface chemistry. We deal with synthetic principles and parameters of metal nitride catalysts in terms of nitrogen source, introducing synthesis strategies of metal nitrides with various morphologies and phases. Recent progress of metal nitride catalysts in (photo)electrochemical reactions, such as hydrogen evolution, oxygen evolution, oxygen reduction, nitrogen reduction, carbon dioxide reduction, and biomass valorization reactions, is discussed with their tailored roles. By providing future direction for remaining challenges, this review aims to guide the design of metal nitride catalysts from a materials point of view, contributing to expanding into energy and environmental technologies.</p>","PeriodicalId":72997,"journal":{"name":"Exploration (Beijing, China)","volume":"5 3","pages":""},"PeriodicalIF":22.5000,"publicationDate":"2025-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/EXP.20240013","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Exploration (Beijing, China)","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/EXP.20240013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Metal nitrides have emerged as promising materials for photoelectrochemical and electrochemical catalysis due to their unique electronic properties and structural versatility, offering high electrical conductivity and abundant active sites for catalytic reactions. Herein, we comprehensively explore the characteristics, synthesis, and application of diverse metal nitride catalysts. Fundamental features and catalytic advantages of metal nitrides are presented in terms of electronic structure and surface chemistry. We deal with synthetic principles and parameters of metal nitride catalysts in terms of nitrogen source, introducing synthesis strategies of metal nitrides with various morphologies and phases. Recent progress of metal nitride catalysts in (photo)electrochemical reactions, such as hydrogen evolution, oxygen evolution, oxygen reduction, nitrogen reduction, carbon dioxide reduction, and biomass valorization reactions, is discussed with their tailored roles. By providing future direction for remaining challenges, this review aims to guide the design of metal nitride catalysts from a materials point of view, contributing to expanding into energy and environmental technologies.

Abstract Image

用于光电化学和电化学催化的金属氮化物催化剂
金属氮化物因其独特的电子性质和结构通用性、高导电性和丰富的催化活性位点而成为光化学和电化学催化的重要材料。本文全面探讨了各种金属氮化物催化剂的特点、合成及应用。从电子结构和表面化学方面介绍了金属氮化物的基本特征和催化优势。从氮源的角度论述了金属氮化物催化剂的合成原理和参数,介绍了不同形态、不同相金属氮化物的合成策略。综述了金属氮化物催化剂在析氢、析氧、氧还原、氮还原、二氧化碳还原、生物质增值等电化学反应中的研究进展。本文旨在从材料的角度指导金属氮化物催化剂的设计,并为其在能源和环境技术领域的扩展做出贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
17.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信