Natural Language Processing: Classification of Web Texts Combined with Deep Learning

Q3 Decision Sciences
Chenwen Zhang
{"title":"Natural Language Processing: Classification of Web Texts Combined with Deep Learning","authors":"Chenwen Zhang","doi":"10.13052/jicts2245-800X.1312","DOIUrl":null,"url":null,"abstract":"With the increasing number of web texts, the classification of web texts has become an important task. In this paper, the text word vector representation method is first analyzed, and bidirectional encoder representations from transformers (BERT) are selected to extract the word vector. The bidirectional gated recurrent unit (BiGRU), convolutional neural network (CNN), and attention mechanism are combined to obtain the context and local features of the text, respectively. Experiments were carried out using the THUCNews dataset. The results showed that in the comparison between word-to-vector (Word2vec), Glove, and BERT, the BERT obtained the best classification result. In the classification of different types of text, the average accuracy and F1value of the BERT-BGCA method reached 0.9521 and 0.9436, respectively, which were superior to other deep learning methods such as TextCNN. The results suggest that the BERT-BGCA method is effective in classifying web texts and can be applied in practice.","PeriodicalId":36697,"journal":{"name":"Journal of ICT Standardization","volume":"13 1","pages":"25-40"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11042907","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of ICT Standardization","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11042907/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Decision Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

With the increasing number of web texts, the classification of web texts has become an important task. In this paper, the text word vector representation method is first analyzed, and bidirectional encoder representations from transformers (BERT) are selected to extract the word vector. The bidirectional gated recurrent unit (BiGRU), convolutional neural network (CNN), and attention mechanism are combined to obtain the context and local features of the text, respectively. Experiments were carried out using the THUCNews dataset. The results showed that in the comparison between word-to-vector (Word2vec), Glove, and BERT, the BERT obtained the best classification result. In the classification of different types of text, the average accuracy and F1value of the BERT-BGCA method reached 0.9521 and 0.9436, respectively, which were superior to other deep learning methods such as TextCNN. The results suggest that the BERT-BGCA method is effective in classifying web texts and can be applied in practice.
自然语言处理:结合深度学习的网络文本分类
随着网络文本数量的不断增加,对网络文本进行分类已成为一项重要的任务。本文首先对文本词向量表示方法进行了分析,并选择了来自变压器的双向编码器表示(BERT)来提取词向量。将双向门控循环单元(BiGRU)、卷积神经网络(CNN)和注意机制相结合,分别获取文本的上下文特征和局部特征。实验使用THUCNews数据集进行。结果表明,在word-to-vector (Word2vec)、Glove和BERT的对比中,BERT获得了最好的分类结果。在对不同类型文本的分类中,BERT-BGCA方法的平均准确率和f1值分别达到0.9521和0.9436,优于TextCNN等其他深度学习方法。结果表明,BERT-BGCA方法对网络文本分类是有效的,可以在实际中应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of ICT Standardization
Journal of ICT Standardization Computer Science-Information Systems
CiteScore
2.20
自引率
0.00%
发文量
18
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信