AI-Assisted Deep-Learning-Based Design of High-Efficiency Class F Power Amplifiers

IF 3.4 0 ENGINEERING, ELECTRICAL & ELECTRONIC
Han Zhou;Haojie Chang;David Widén;Ludvig Fornstedt;Gabriel Melin;Christian Fager
{"title":"AI-Assisted Deep-Learning-Based Design of High-Efficiency Class F Power Amplifiers","authors":"Han Zhou;Haojie Chang;David Widén;Ludvig Fornstedt;Gabriel Melin;Christian Fager","doi":"10.1109/LMWT.2025.3552495","DOIUrl":null,"url":null,"abstract":"This article presents a deep-learning-based approach for designing Class F power amplifiers (PAs). We use convolutional neural networks (CNNs) to predict the scattering parameters of pixelated electromagnetic (EM) layouts. Using a CNN-based surrogate model and an evolutionary algorithm, we synthesize complex Class F output networks. As a proof of concept, we implement a gallium nitride (GaN) HEMT Class F PA, achieving a measured output power of 41.6 dBm and a drain efficiency of 74% at 2.9 GHz. The prototype also linearly reproduces a 20-MHz modulated signal with an 8.5-dB peak-to-average power ratio (PAPR), achieving an adjacent channel leakage ratio (ACLR) of −50.7 dBc with digital predistortion (DPD). To the best of our knowledge, this is the first deep-learning-based Class F PA design using pixelated layout structures.","PeriodicalId":73297,"journal":{"name":"IEEE microwave and wireless technology letters","volume":"35 6","pages":"690-693"},"PeriodicalIF":3.4000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10948016","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE microwave and wireless technology letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10948016/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This article presents a deep-learning-based approach for designing Class F power amplifiers (PAs). We use convolutional neural networks (CNNs) to predict the scattering parameters of pixelated electromagnetic (EM) layouts. Using a CNN-based surrogate model and an evolutionary algorithm, we synthesize complex Class F output networks. As a proof of concept, we implement a gallium nitride (GaN) HEMT Class F PA, achieving a measured output power of 41.6 dBm and a drain efficiency of 74% at 2.9 GHz. The prototype also linearly reproduces a 20-MHz modulated signal with an 8.5-dB peak-to-average power ratio (PAPR), achieving an adjacent channel leakage ratio (ACLR) of −50.7 dBc with digital predistortion (DPD). To the best of our knowledge, this is the first deep-learning-based Class F PA design using pixelated layout structures.
基于ai辅助深度学习的高效F类功率放大器设计
本文提出了一种基于深度学习的F类功率放大器(pa)设计方法。利用卷积神经网络(cnn)预测像素化电磁(EM)布局的散射参数。利用基于cnn的代理模型和进化算法,合成了复杂的F类输出网络。作为概念验证,我们实现了氮化镓(GaN) HEMT F类PA,在2.9 GHz下实现了41.6 dBm的测量输出功率和74%的漏极效率。该原型还可以线性再现具有8.5 db峰均功率比(PAPR)的20 mhz调制信号,实现具有数字预失真(DPD)的相邻通道泄漏比(ACLR)为- 50.7 dBc。据我们所知,这是第一个使用像素化布局结构的基于深度学习的Class F PA设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信