Investigation of SiC MOSFET Structures for Surge Robustness in the Third Quadrant Under Various $V_{\text{GS}}$ Biases

IF 3.9 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Xinbin Zhan;Yanjing He;Xi Jiang;Hao Yuan;Qingwen Song;Xiaoyan Tang;Xiaowu Gong;Yuming Zhang
{"title":"Investigation of SiC MOSFET Structures for Surge Robustness in the Third Quadrant Under Various $V_{\\text{GS}}$ Biases","authors":"Xinbin Zhan;Yanjing He;Xi Jiang;Hao Yuan;Qingwen Song;Xiaoyan Tang;Xiaowu Gong;Yuming Zhang","doi":"10.1109/OJPEL.2025.3576381","DOIUrl":null,"url":null,"abstract":"In this work, SiC planar-gate MOSFET (PG-MOS), SiC short-channel (0.3<inline-formula><tex-math>$\\mathbf {\\mu m}$</tex-math></inline-formula>) MOSFET (SCMOS), and SiC JBSFET are tested for the third quadrant I-V temperature characteristics and surge current capability at different gate-source bias voltage. The I-V temperature curves and the TCAD simulation reveal that different device structures exhibit distinct temperature variation trends due to different current conduction paths. The surge test results indicate that SiC PGMOS and SiC SCMOS exhibit bipolar conduction modes at <inline-formula><tex-math>${\\mathit{V}}_{\\mathbf{GS}} = 0$</tex-math></inline-formula> V and <inline-formula><tex-math>${\\mathit{V}}_{\\mathbf{GS}} = -10$</tex-math></inline-formula> V. SiC JBSFET operates in a unipolar conduction mode prior to the surge current density threshold of 998.3 <inline-formula><tex-math>$\\mathbf {A}/\\mathbf {cm}^{\\mathbf {2}}$</tex-math></inline-formula>, after which it transitions to a post-bipolar conduction mode, similar to SiC JBS diode. Finally, the failure mechanism is analyzed. The surge current crowding in the edge termination region is a key factor affecting the surge capability of SiC PGMOS. Reducing channel length leads to premature breakdown of the gate-source dielectric layer in SiC SCMOS at <inline-formula><tex-math>${\\mathit{V}}_{\\mathbf{GS}} = 0$</tex-math></inline-formula> V but enhances the surge ability at <inline-formula><tex-math>${\\mathit{V}}_{\\mathbf{GS}} = -10$</tex-math></inline-formula> V. The thermal stress induced by the surge current in SiC JBSFET causes large-scale damage to the source metal and cells, resulting in a short circuit between the gate, source, and drain.","PeriodicalId":93182,"journal":{"name":"IEEE open journal of power electronics","volume":"6 ","pages":"1028-1035"},"PeriodicalIF":3.9000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11023073","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE open journal of power electronics","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11023073/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, SiC planar-gate MOSFET (PG-MOS), SiC short-channel (0.3$\mathbf {\mu m}$) MOSFET (SCMOS), and SiC JBSFET are tested for the third quadrant I-V temperature characteristics and surge current capability at different gate-source bias voltage. The I-V temperature curves and the TCAD simulation reveal that different device structures exhibit distinct temperature variation trends due to different current conduction paths. The surge test results indicate that SiC PGMOS and SiC SCMOS exhibit bipolar conduction modes at ${\mathit{V}}_{\mathbf{GS}} = 0$ V and ${\mathit{V}}_{\mathbf{GS}} = -10$ V. SiC JBSFET operates in a unipolar conduction mode prior to the surge current density threshold of 998.3 $\mathbf {A}/\mathbf {cm}^{\mathbf {2}}$, after which it transitions to a post-bipolar conduction mode, similar to SiC JBS diode. Finally, the failure mechanism is analyzed. The surge current crowding in the edge termination region is a key factor affecting the surge capability of SiC PGMOS. Reducing channel length leads to premature breakdown of the gate-source dielectric layer in SiC SCMOS at ${\mathit{V}}_{\mathbf{GS}} = 0$ V but enhances the surge ability at ${\mathit{V}}_{\mathbf{GS}} = -10$ V. The thermal stress induced by the surge current in SiC JBSFET causes large-scale damage to the source metal and cells, resulting in a short circuit between the gate, source, and drain.
不同$V_{\text{GS}}$偏置下SiC MOSFET结构在第三象限浪涌稳健性的研究
本文测试了SiC平面栅MOSFET (PG-MOS)、SiC短通道(0.3$\mathbf {\mu m}$) MOSFET (SCMOS)和SiC JBSFET在不同栅源偏置电压下的第三象限I-V温度特性和浪涌电流能力。I-V温度曲线和TCAD仿真表明,由于电流传导路径不同,不同器件结构的温度变化趋势也不同。浪涌测试结果表明,SiC PGMOS和SiC SCMOS在${\mathit{V}}_{\mathbf{GS}} = 0$ V和${\mathit{V}}_{\mathbf{GS}} = -10$ V时表现出双极导通模式,在浪涌电流密度阈值为998.3 $\mathbf {a}/\mathbf {cm}^{\mathbf{2}}$之前,SiC jbset工作在单极导通模式,之后转变为后双极导通模式,类似于SiC JBS二极管。最后对其失效机理进行了分析。边缘终端区域的浪涌电流拥挤是影响SiC PGMOS浪涌性能的关键因素。减小通道长度会导致SiC SCMOS在${\mathit{V}}_{\mathbf{GS}} = 0$ V时栅源介质层过早击穿,而在${\mathit{V}}_{\mathbf{GS}} = -10$ V时浪涌能力增强。在SiC JBSFET中浪涌电流引起的热应力会对源金属和电池造成大规模的损伤,导致栅极、源极和漏极之间短路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.60
自引率
0.00%
发文量
0
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信