Shrinking bounded domains to totally bounded ones

IF 1.2 3区 数学 Q1 MATHEMATICS
Mihály Bessenyei , Evelin Pénzes
{"title":"Shrinking bounded domains to totally bounded ones","authors":"Mihály Bessenyei ,&nbsp;Evelin Pénzes","doi":"10.1016/j.jmaa.2025.129808","DOIUrl":null,"url":null,"abstract":"<div><div>The Kuratowski measure of noncompactness or the measure of nondensifiability provide direct approach to topological fixed point theorems or to existence issues of generalized fractals. We point out that these measures are not so distinguished as they appear at first glance: Requiring quite simple properties on a set-function, we can prove analogous results. The method behind (the main result of this note) is a reducing principle which allows to shrink bounded and closed domains to compact ones. In the approach, the Knaster–Tarski and the Kantorovich Fixed Point Theorems play a key role.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"552 1","pages":"Article 129808"},"PeriodicalIF":1.2000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X2500589X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The Kuratowski measure of noncompactness or the measure of nondensifiability provide direct approach to topological fixed point theorems or to existence issues of generalized fractals. We point out that these measures are not so distinguished as they appear at first glance: Requiring quite simple properties on a set-function, we can prove analogous results. The method behind (the main result of this note) is a reducing principle which allows to shrink bounded and closed domains to compact ones. In the approach, the Knaster–Tarski and the Kantorovich Fixed Point Theorems play a key role.
将有界域缩小为完全有界域
非紧性测度或非致密性测度为研究拓扑不动点定理或广义分形的存在性问题提供了直接的途径。我们指出,这些测度并不像乍看之下那样泾渭分明:只要在集合函数上有相当简单的性质,我们就可以证明类似的结果。背后的方法(这篇笔记的主要结果)是一个简化原理,它允许将有界和封闭的域缩小到紧化的域。在该方法中,Knaster-Tarski和Kantorovich不动点定理起着关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信