Switchable fractional perfect composite vortex encryption based on double-layer metasurface

IF 2.5 3区 物理与天体物理 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Zhenyuan Wang , Heyang Qin , Zheng-Da Hu , Wenyuan Wang , Tianhang Chen , Jingjing Wu , Jicheng Wang
{"title":"Switchable fractional perfect composite vortex encryption based on double-layer metasurface","authors":"Zhenyuan Wang ,&nbsp;Heyang Qin ,&nbsp;Zheng-Da Hu ,&nbsp;Wenyuan Wang ,&nbsp;Tianhang Chen ,&nbsp;Jingjing Wu ,&nbsp;Jicheng Wang","doi":"10.1016/j.photonics.2025.101422","DOIUrl":null,"url":null,"abstract":"<div><div>We propose a double-layer metasurface to realize the polarization switching of fractional perfect composite vortex beams (FPCVBs). The metasurface is designed by the Jones matrix formalism and optimized through the “Random Forest” machine learning algorithm, achieving high polarization switching efficiency. The grafted-FPCVBs are presented with featuring multivariate topological charges, and double-ring FPCVBs are achieved with independent on/off modulation and shaping transformation of inner and outer ring intensities. These capabilities unlock orbital angular momentum density modulation and light field reconfiguration in composited light architectures. Moreover, we design an optical encryption protocol inspired by the hierarchical structure of chinese characters, where semantic radicals are mapped to polarization-encoded FPCVBs. These innovations present significant potential for applications in optical information security, particle manipulation, and next-generation photonic communications.</div></div>","PeriodicalId":49699,"journal":{"name":"Photonics and Nanostructures-Fundamentals and Applications","volume":"66 ","pages":"Article 101422"},"PeriodicalIF":2.5000,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics and Nanostructures-Fundamentals and Applications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569441025000720","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a double-layer metasurface to realize the polarization switching of fractional perfect composite vortex beams (FPCVBs). The metasurface is designed by the Jones matrix formalism and optimized through the “Random Forest” machine learning algorithm, achieving high polarization switching efficiency. The grafted-FPCVBs are presented with featuring multivariate topological charges, and double-ring FPCVBs are achieved with independent on/off modulation and shaping transformation of inner and outer ring intensities. These capabilities unlock orbital angular momentum density modulation and light field reconfiguration in composited light architectures. Moreover, we design an optical encryption protocol inspired by the hierarchical structure of chinese characters, where semantic radicals are mapped to polarization-encoded FPCVBs. These innovations present significant potential for applications in optical information security, particle manipulation, and next-generation photonic communications.
基于双层超表面的可切换分数完美复合涡旋加密
我们提出了一种双层超表面来实现分数完美复合涡旋光束(FPCVBs)的偏振开关。该超表面采用Jones矩阵形式设计,并通过“随机森林”机器学习算法进行优化,实现了较高的极化开关效率。接枝的FPCVBs具有多元拓扑电荷,并通过内环和外环强度的独立开/关调制和整形变换实现了双环FPCVBs。这些能力解锁了合成光架构中的轨道角动量密度调制和光场重构。此外,我们设计了一种受汉字分层结构启发的光学加密协议,其中语义基映射到极化编码的FPCVBs。这些创新在光学信息安全、粒子操纵和下一代光子通信方面具有巨大的应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.00
自引率
3.70%
发文量
77
审稿时长
62 days
期刊介绍: This journal establishes a dedicated channel for physicists, material scientists, chemists, engineers and computer scientists who are interested in photonics and nanostructures, and especially in research related to photonic crystals, photonic band gaps and metamaterials. The Journal sheds light on the latest developments in this growing field of science that will see the emergence of faster telecommunications and ultimately computers that use light instead of electrons to connect components.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信