{"title":"Transposon persistence and control in germ cells","authors":"Lauren Tracy, Zhao Zhang","doi":"10.1016/j.gde.2025.102370","DOIUrl":null,"url":null,"abstract":"<div><div>Transposons, or ‘jumping genes’, are ubiquitous genomic elements with the dual capacity to drive evolutionary innovation and disrupt genome integrity through gene mutation and DNA damage. Their activity is particularly significant in germline cells, which transmit genetic material to the next generation. Transposon activity in these cells embodies a delicate balance: while limited transposon activity can introduce genetic diversity and drive evolution, unchecked mobilization risks DNA damage, sterility, and loss of fitness. As ‘selfish genes’, transposons have evolved strategies to ensure their propagation without jeopardizing host survival. This intricate relationship raises compelling questions about how transposon activity is regulated to sustain both genome stability and evolutionary potential. In this review, we explore recent advances in understanding the small RNA pathway that represses transposons in germ cells, the Piwi-interacting RNA pathway. Furthermore, we highlight how transposons creatively bypass repression. These findings illuminate the dynamic interplay between hosts and transposons, offering deeper insights into genome evolution and preservation.</div></div>","PeriodicalId":50606,"journal":{"name":"Current Opinion in Genetics & Development","volume":"93 ","pages":"Article 102370"},"PeriodicalIF":3.6000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Genetics & Development","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959437X25000620","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Transposons, or ‘jumping genes’, are ubiquitous genomic elements with the dual capacity to drive evolutionary innovation and disrupt genome integrity through gene mutation and DNA damage. Their activity is particularly significant in germline cells, which transmit genetic material to the next generation. Transposon activity in these cells embodies a delicate balance: while limited transposon activity can introduce genetic diversity and drive evolution, unchecked mobilization risks DNA damage, sterility, and loss of fitness. As ‘selfish genes’, transposons have evolved strategies to ensure their propagation without jeopardizing host survival. This intricate relationship raises compelling questions about how transposon activity is regulated to sustain both genome stability and evolutionary potential. In this review, we explore recent advances in understanding the small RNA pathway that represses transposons in germ cells, the Piwi-interacting RNA pathway. Furthermore, we highlight how transposons creatively bypass repression. These findings illuminate the dynamic interplay between hosts and transposons, offering deeper insights into genome evolution and preservation.
期刊介绍:
Current Opinion in Genetics and Development aims to stimulate scientifically grounded, interdisciplinary, multi-scale debate and exchange of ideas. It contains polished, concise and timely reviews and opinions, with particular emphasis on those articles published in the past two years. In addition to describing recent trends, the authors are encouraged to give their subjective opinion of the topics discussed.
In Current Opinion in Genetics and Development we help the reader by providing in a systematic manner:
1. The views of experts on current advances in their field in a clear and readable form.
2. Evaluations of the most interesting papers, annotated by experts, from the great wealth of original publications.[...]
The subject of Genetics and Development is divided into six themed sections, each of which is reviewed once a year:
• Cancer Genomics
• Genome Architecture and Expression
• Molecular and genetic basis of disease
• Developmental mechanisms, patterning and evolution
• Cell reprogramming, regeneration and repair
• Genetics of Human Origin / Evolutionary genetics (alternate years)