A lowest-order divergence-free virtual element method for Navier-Stokes equations with damping on polygonal mesh

IF 1.2 3区 数学 Q1 MATHEMATICS
Yanping Chen , Qing Li , Jian Huang , Yu Xiong
{"title":"A lowest-order divergence-free virtual element method for Navier-Stokes equations with damping on polygonal mesh","authors":"Yanping Chen ,&nbsp;Qing Li ,&nbsp;Jian Huang ,&nbsp;Yu Xiong","doi":"10.1016/j.jmaa.2025.129792","DOIUrl":null,"url":null,"abstract":"<div><div>This paper focuses on designing a lowest-order divergence-free virtual element method for solving Navier-Stokes equations with a nonlinear damping term on polygonal meshes. The exact divergence-free property of virtual space preserves the mass-conservation of the system. With the application of Helmholtz projection, we provide stability estimates regarding the velocity. An optimal convergence estimate is derived, showing that the error estimate for the velocity in energy norm is pressure-independent. Finally, we perform various numerical simulations to validate the accuracy of our theoretical findings.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"552 2","pages":"Article 129792"},"PeriodicalIF":1.2000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25005736","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper focuses on designing a lowest-order divergence-free virtual element method for solving Navier-Stokes equations with a nonlinear damping term on polygonal meshes. The exact divergence-free property of virtual space preserves the mass-conservation of the system. With the application of Helmholtz projection, we provide stability estimates regarding the velocity. An optimal convergence estimate is derived, showing that the error estimate for the velocity in energy norm is pressure-independent. Finally, we perform various numerical simulations to validate the accuracy of our theoretical findings.
多边形网格上具有阻尼的Navier-Stokes方程的一种低阶无散度虚元法
设计了一种求解多边形网格上非线性阻尼项的Navier-Stokes方程的低阶无散度虚元法。虚空间的完全无散度性质保持了系统的质量守恒。利用亥姆霍兹投影,给出了速度的稳定性估计。导出了最优收敛估计,表明能量范数下速度的误差估计与压力无关。最后,我们进行了各种数值模拟来验证我们的理论发现的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信