Degree bounds for rational generators of invariant fields of finite abelian groups

IF 0.7 2区 数学 Q2 MATHEMATICS
Ben Blum-Smith
{"title":"Degree bounds for rational generators of invariant fields of finite abelian groups","authors":"Ben Blum-Smith","doi":"10.1016/j.jpaa.2025.108029","DOIUrl":null,"url":null,"abstract":"<div><div>We study degree bounds on rational but not necessarily polynomial generators for the field <span><math><mi>k</mi><msup><mrow><mo>(</mo><mi>V</mi><mo>)</mo></mrow><mrow><mi>G</mi></mrow></msup></math></span> of rational invariants of a linear action of a finite abelian group. We show that lattice-theoretic methods used recently by the author and collaborators to study polynomial generators for the same field largely carry over, after minor modifications to the arguments. It then develops that the specific degree bounds found in that setting also carry over.</div></div>","PeriodicalId":54770,"journal":{"name":"Journal of Pure and Applied Algebra","volume":"229 9","pages":"Article 108029"},"PeriodicalIF":0.7000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pure and Applied Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022404925001689","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study degree bounds on rational but not necessarily polynomial generators for the field k(V)G of rational invariants of a linear action of a finite abelian group. We show that lattice-theoretic methods used recently by the author and collaborators to study polynomial generators for the same field largely carry over, after minor modifications to the arguments. It then develops that the specific degree bounds found in that setting also carry over.
有限阿贝尔群不变域的有理发生器的度界
研究有限阿贝尔群的线性作用的有理不变量k(V)G域的有理不变量的次界,但不一定是多项式生成子。我们表明,作者和合作者最近用于研究同一领域的多项式生成器的格理论方法在对参数进行轻微修改后,在很大程度上延续了下来。然后,在这种情况下发现的特定程度界限也会延续下去。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
12.50%
发文量
225
审稿时长
17 days
期刊介绍: The Journal of Pure and Applied Algebra concentrates on that part of algebra likely to be of general mathematical interest: algebraic results with immediate applications, and the development of algebraic theories of sufficiently general relevance to allow for future applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信