Positivity in T-equivariant K-theory of partial flag varieties associated to Kac-Moody groups

IF 0.7 2区 数学 Q2 MATHEMATICS
Joseph Compton, Shrawan Kumar
{"title":"Positivity in T-equivariant K-theory of partial flag varieties associated to Kac-Moody groups","authors":"Joseph Compton,&nbsp;Shrawan Kumar","doi":"10.1016/j.jpaa.2025.108026","DOIUrl":null,"url":null,"abstract":"<div><div>We prove sign-alternation of the product structure constants in the basis dual to the basis consisting of the structure sheaves of Schubert varieties in the torus-equivariant Grothendieck group of coherent sheaves on the partial flag varieties <span><math><mi>G</mi><mo>/</mo><mi>P</mi></math></span> associated to an arbitrary symmetrizable Kac-Moody group <em>G</em>, where <em>P</em> is any parabolic subgroup of finite type. This extends the previous work of Kumar from <span><math><mi>G</mi><mo>/</mo><mi>B</mi></math></span> to <span><math><mi>G</mi><mo>/</mo><mi>P</mi></math></span>. When <em>G</em> is of finite type, i.e., it is a semisimple group, then it was proved by Anderson-Griffeth-Miller.</div></div>","PeriodicalId":54770,"journal":{"name":"Journal of Pure and Applied Algebra","volume":"229 9","pages":"Article 108026"},"PeriodicalIF":0.7000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pure and Applied Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022404925001653","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We prove sign-alternation of the product structure constants in the basis dual to the basis consisting of the structure sheaves of Schubert varieties in the torus-equivariant Grothendieck group of coherent sheaves on the partial flag varieties G/P associated to an arbitrary symmetrizable Kac-Moody group G, where P is any parabolic subgroup of finite type. This extends the previous work of Kumar from G/B to G/P. When G is of finite type, i.e., it is a semisimple group, then it was proved by Anderson-Griffeth-Miller.
与Kac-Moody群相关的部分标志品种的t等变k理论的正性
证明了在任意对称Kac-Moody群G的部分标志群G/P上,环-等变Grothendieck群上由Schubert簇结构簇组成的基对偶中乘积结构常数的符号交替性,其中P是有限型抛物子群G。这将Kumar以前的工作从G/B扩展到G/P。当G是有限型即半单群时,由Anderson-Griffeth-Miller证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
12.50%
发文量
225
审稿时长
17 days
期刊介绍: The Journal of Pure and Applied Algebra concentrates on that part of algebra likely to be of general mathematical interest: algebraic results with immediate applications, and the development of algebraic theories of sufficiently general relevance to allow for future applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信