Conditional generative AI for high-fidelity synthesis of hydrating cementitious microstructures

IF 7.9 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Minfei Liang , Kun Feng , Jinbao Xie , Yuyang Wei , Sonia Contera , Erik Schlangen , Branko Šavija
{"title":"Conditional generative AI for high-fidelity synthesis of hydrating cementitious microstructures","authors":"Minfei Liang ,&nbsp;Kun Feng ,&nbsp;Jinbao Xie ,&nbsp;Yuyang Wei ,&nbsp;Sonia Contera ,&nbsp;Erik Schlangen ,&nbsp;Branko Šavija","doi":"10.1016/j.matdes.2025.114251","DOIUrl":null,"url":null,"abstract":"<div><div>Portland cement paste has a highly heterogenous evolving microstructure that complicates the development of stronger and greener cementitious materials. Microstructure is the fundamental input of multiscale studies on material behaviors. Herein, we propose a conditional generative AI framework for synthesizing high-fidelity 3D microstructures of hydrating cement paste (1–28 days) with varying water-to-cement ratios and Blaine fineness values. A latent diffusion transformer, operating within a compact two-stage latent space derived via a vector quantized variational autoencoder, efficiently captures and reproduces experimentally measured microstructural patterns. Statistical analyses confirm strong consistency in grey value distributions, micromechanical properties, hydration phase evolution, and particle size distributions, with only minor boundary-related discrepancies. Validation using a pretrained classifier further corroborates the fidelity of generated microstructures. This approach provides a robust tool for realistic cement paste microstructure generation, supporting multiscale modeling and advancing the design of sustainable cementitious materials.</div></div>","PeriodicalId":383,"journal":{"name":"Materials & Design","volume":"256 ","pages":"Article 114251"},"PeriodicalIF":7.9000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials & Design","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0264127525006719","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Portland cement paste has a highly heterogenous evolving microstructure that complicates the development of stronger and greener cementitious materials. Microstructure is the fundamental input of multiscale studies on material behaviors. Herein, we propose a conditional generative AI framework for synthesizing high-fidelity 3D microstructures of hydrating cement paste (1–28 days) with varying water-to-cement ratios and Blaine fineness values. A latent diffusion transformer, operating within a compact two-stage latent space derived via a vector quantized variational autoencoder, efficiently captures and reproduces experimentally measured microstructural patterns. Statistical analyses confirm strong consistency in grey value distributions, micromechanical properties, hydration phase evolution, and particle size distributions, with only minor boundary-related discrepancies. Validation using a pretrained classifier further corroborates the fidelity of generated microstructures. This approach provides a robust tool for realistic cement paste microstructure generation, supporting multiscale modeling and advancing the design of sustainable cementitious materials.

Abstract Image

高保真水化胶凝微观结构合成的条件生成人工智能
波特兰水泥膏体具有高度不均匀的微观结构,这使得开发更强、更环保的水泥材料变得复杂。微观结构是材料行为多尺度研究的基本输入。在此,我们提出了一个条件生成AI框架,用于合成具有不同水灰比和Blaine细度值的水化水泥浆体(1-28天)的高保真三维微观结构。潜伏扩散变压器,在一个紧凑的两级潜伏空间中工作,通过矢量量化变分自编码器推导,有效地捕获和再现实验测量的微观结构模式。统计分析证实灰值分布、微观力学性能、水化相演化和粒度分布具有很强的一致性,只有较小的边界相关差异。使用预训练分类器的验证进一步证实了生成的微结构的保真度。该方法为现实水泥浆微观结构生成提供了一个强大的工具,支持多尺度建模和推进可持续胶凝材料的设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials & Design
Materials & Design Engineering-Mechanical Engineering
CiteScore
14.30
自引率
7.10%
发文量
1028
审稿时长
85 days
期刊介绍: Materials and Design is a multi-disciplinary journal that publishes original research reports, review articles, and express communications. The journal focuses on studying the structure and properties of inorganic and organic materials, advancements in synthesis, processing, characterization, and testing, the design of materials and engineering systems, and their applications in technology. It aims to bring together various aspects of materials science, engineering, physics, and chemistry. The journal explores themes ranging from materials to design and aims to reveal the connections between natural and artificial materials, as well as experiment and modeling. Manuscripts submitted to Materials and Design should contain elements of discovery and surprise, as they often contribute new insights into the architecture and function of matter.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信