Fractal representations of the number zero on the parabola curve

IF 1.2 3区 数学 Q1 MATHEMATICS
Xuemin Wang , Yi Lu , Jingjing Chen , Kan Jiang
{"title":"Fractal representations of the number zero on the parabola curve","authors":"Xuemin Wang ,&nbsp;Yi Lu ,&nbsp;Jingjing Chen ,&nbsp;Kan Jiang","doi":"10.1016/j.jmaa.2025.129801","DOIUrl":null,"url":null,"abstract":"<div><div>Motivated by several results in the study of unique <em>q</em>-expansions, this paper investigates the following problem. Let <span><math><mi>K</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> be a self-similar set with the convex hull <span><math><msup><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow><mrow><mn>2</mn></mrow></msup></math></span>. How many distinct pairs <span><math><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo><mo>∈</mo><mi>K</mi></math></span> satisfy the equation<span><span><span><math><mn>0</mn><mo>=</mo><mi>y</mi><mo>−</mo><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>?</mo></math></span></span></span> We establish the following result:</div><div>For any <span><math><mi>α</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>2</mn><mo>)</mo></math></span> and any <span><math><mi>ϵ</mi><mo>&gt;</mo><mn>0</mn></math></span>, there exists a homogeneous self-similar set <em>K</em> (with convex hull <span><math><msup><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow><mrow><mn>2</mn></mrow></msup></math></span>) such that<span><span><span><math><mi>α</mi><mo>−</mo><mi>ϵ</mi><mo>&lt;</mo><msub><mrow><mi>dim</mi></mrow><mrow><mi>H</mi></mrow></msub><mo>⁡</mo><mo>(</mo><mi>K</mi><mo>)</mo><mo>&lt;</mo><mi>α</mi><mo>,</mo></math></span></span></span> and the equation<span><span><span><math><mn>0</mn><mo>=</mo><mi>y</mi><mo>−</mo><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>,</mo><mspace></mspace><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo><mo>∈</mo><mi>K</mi><mo>,</mo></math></span></span></span> has exactly countably many distinct solutions. Specifically,<span><span><span><math><mo>{</mo><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo><mo>:</mo><mi>y</mi><mo>=</mo><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>}</mo><mo>∩</mo><mi>K</mi><mo>=</mo><mrow><mo>{</mo><mrow><mo>(</mo><mfrac><mrow><mn>1</mn></mrow><mrow><msup><mrow><mi>m</mi></mrow><mrow><mi>k</mi></mrow></msup></mrow></mfrac><mo>,</mo><mfrac><mrow><mn>1</mn></mrow><mrow><msup><mrow><mi>m</mi></mrow><mrow><mn>2</mn><mi>k</mi></mrow></msup></mrow></mfrac><mo>)</mo></mrow><mo>:</mo><mi>k</mi><mo>∈</mo><msup><mrow><mi>N</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>∪</mo><mo>{</mo><mn>0</mn><mo>}</mo><mo>}</mo></mrow><mo>∪</mo><mo>{</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>0</mn><mo>)</mo><mo>}</mo><mo>,</mo></math></span></span></span> where <span><math><msub><mrow><mi>dim</mi></mrow><mrow><mi>H</mi></mrow></msub></math></span> denotes the Hausdorff dimension, and <span><math><mn>1</mn><mo>/</mo><mi>m</mi></math></span>, <span><math><mi>m</mi><mo>∈</mo><msup><mrow><mi>N</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span>, represents the similarity ratio of <em>K</em>. Similar result can be proved for the Bedford-McMullen carpet.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"552 2","pages":"Article 129801"},"PeriodicalIF":1.2000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25005827","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Motivated by several results in the study of unique q-expansions, this paper investigates the following problem. Let KR2 be a self-similar set with the convex hull [0,1]2. How many distinct pairs (x,y)K satisfy the equation0=yx2? We establish the following result:
For any α(0,2) and any ϵ>0, there exists a homogeneous self-similar set K (with convex hull [0,1]2) such thatαϵ<dimH(K)<α, and the equation0=yx2,(x,y)K, has exactly countably many distinct solutions. Specifically,{(x,y):y=x2}K={(1mk,1m2k):kN+{0}}{(0,0)}, where dimH denotes the Hausdorff dimension, and 1/m, mN+, represents the similarity ratio of K. Similar result can be proved for the Bedford-McMullen carpet.
分形表示抛物线曲线上的数字零
本文在研究唯一q展开的几个结果的启发下,研究了以下问题。设K∧R2是一个具有凸包[0,1]2的自相似集合。有多少对(x,y)∈K满足方程0=y - x2?我们建立了以下结果:对于任意α∈(0,2)和任意ϵ>;0,存在一个齐次自相似集K(凸包[0,1]2),使得α−ϵ<; dih (K)<;α和方程0=y−x2,(x,y)∈K,有恰好可数多个不同解。具体来说,{(x,y):y=x2}∩K={(1mk,1m2k): K∈N+∪{0}}∪{(0,0)},其中dimH表示Hausdorff维数,1 /m, m∈N+表示K的相似比。对于Bedford-McMullen地毯也可以证明类似的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信