{"title":"Plastic waste upcycling through electrocatalysis","authors":"Yuan Ji, Chunxiao Liu, Tingting Zheng, Chuan Xia","doi":"10.1016/j.coelec.2025.101712","DOIUrl":null,"url":null,"abstract":"<div><div>The widespread use and chemical durability of plastics have contributed to the escalating issue of white pollution. Among various mitigation strategies, recycling waste plastics stands out as one of the most effective and sustainable solutions. Electrochemical methods, featuring mild operating conditions, tunable reaction selectivity, and low carbon emissions, have emerged as promising approaches for plastic recycling. This mini review offers a concise summary of recent advances in the electrocatalytic conversion of plastic waste. We highlight key strategies that involve the selective electrooxidation of monomers derived from plastic hydrolysis, the coupling of anodic and cathodic reactions to increase energy efficiency, and the incorporation of heteroatoms to expand the functionality of target products. We conclude by discussing emerging approaches for non-hydrolyzable plastics and the integration of electrocatalysis with complementary methods for broader applicability and scalable circular recycling.</div></div>","PeriodicalId":11028,"journal":{"name":"Current Opinion in Electrochemistry","volume":"52 ","pages":"Article 101712"},"PeriodicalIF":7.9000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Electrochemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2451910325000717","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The widespread use and chemical durability of plastics have contributed to the escalating issue of white pollution. Among various mitigation strategies, recycling waste plastics stands out as one of the most effective and sustainable solutions. Electrochemical methods, featuring mild operating conditions, tunable reaction selectivity, and low carbon emissions, have emerged as promising approaches for plastic recycling. This mini review offers a concise summary of recent advances in the electrocatalytic conversion of plastic waste. We highlight key strategies that involve the selective electrooxidation of monomers derived from plastic hydrolysis, the coupling of anodic and cathodic reactions to increase energy efficiency, and the incorporation of heteroatoms to expand the functionality of target products. We conclude by discussing emerging approaches for non-hydrolyzable plastics and the integration of electrocatalysis with complementary methods for broader applicability and scalable circular recycling.
期刊介绍:
The development of the Current Opinion journals stemmed from the acknowledgment of the growing challenge for specialists to stay abreast of the expanding volume of information within their field. In Current Opinion in Electrochemistry, they help the reader by providing in a systematic manner:
1.The views of experts on current advances in electrochemistry in a clear and readable form.
2.Evaluations of the most interesting papers, annotated by experts, from the great wealth of original publications.
In the realm of electrochemistry, the subject is divided into 12 themed sections, with each section undergoing an annual review cycle:
• Bioelectrochemistry • Electrocatalysis • Electrochemical Materials and Engineering • Energy Storage: Batteries and Supercapacitors • Energy Transformation • Environmental Electrochemistry • Fundamental & Theoretical Electrochemistry • Innovative Methods in Electrochemistry • Organic & Molecular Electrochemistry • Physical & Nano-Electrochemistry • Sensors & Bio-sensors •