Enhancing face recognition attendance system utilizing real-time face tracking

IF 6 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Emmanuel Bugingo , Obed Imbahafi , Athnatius Caius Umeonyirioha , Tohari Ahmad , Ntivuguruzwa Jean De La Croix , Anne Marie Uwumuremyi
{"title":"Enhancing face recognition attendance system utilizing real-time face tracking","authors":"Emmanuel Bugingo ,&nbsp;Obed Imbahafi ,&nbsp;Athnatius Caius Umeonyirioha ,&nbsp;Tohari Ahmad ,&nbsp;Ntivuguruzwa Jean De La Croix ,&nbsp;Anne Marie Uwumuremyi","doi":"10.1016/j.iot.2025.101660","DOIUrl":null,"url":null,"abstract":"<div><div>Manual roll calls and existing biometric attendance systems, which capture attendance only at the start or end of class, are prone to inaccuracies such as proxy attendance and fail to monitor students’ presence throughout the sessions in Schools. This study proposes an enhanced face recognition attendance system utilizing real-time face tracking to ensure accuracy and reliability in attendance tracking. The system captures facial data using OpenCV for detection and a CNN-based library for recognition, logging attendance at 30 min intervals. A minimum presence of 80% of the session must be marked present. Attendance records are synchronized in real time using Firebase, and insights are generated using Plotly for visual analytics. The system achieves a recognition accuracy of 94% under optimal conditions and demonstrates robustness under varying environments. Comparative analysis with existing algorithms highlights its improved scalability and usability, significantly advancing over traditional methods.</div></div>","PeriodicalId":29968,"journal":{"name":"Internet of Things","volume":"33 ","pages":"Article 101660"},"PeriodicalIF":6.0000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet of Things","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S254266052500174X","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Manual roll calls and existing biometric attendance systems, which capture attendance only at the start or end of class, are prone to inaccuracies such as proxy attendance and fail to monitor students’ presence throughout the sessions in Schools. This study proposes an enhanced face recognition attendance system utilizing real-time face tracking to ensure accuracy and reliability in attendance tracking. The system captures facial data using OpenCV for detection and a CNN-based library for recognition, logging attendance at 30 min intervals. A minimum presence of 80% of the session must be marked present. Attendance records are synchronized in real time using Firebase, and insights are generated using Plotly for visual analytics. The system achieves a recognition accuracy of 94% under optimal conditions and demonstrates robustness under varying environments. Comparative analysis with existing algorithms highlights its improved scalability and usability, significantly advancing over traditional methods.
利用实时人脸跟踪增强人脸识别考勤系统
人工点名和现有的生物识别考勤系统只在上课开始或结束时记录出勤情况,容易出现代理出勤等不准确现象,也无法在学校的整个课程中监控学生的出勤情况。本研究提出一种利用实时人脸追踪的增强型人脸识别考勤系统,以确保考勤追踪的准确性和可靠性。该系统使用OpenCV进行检测,使用基于cnn的库进行识别,每隔30分钟记录一次考勤。至少80%的会话必须被标记为存在。考勤记录使用Firebase实时同步,洞察使用Plotly生成可视化分析。该系统在最优条件下的识别准确率达到94%,并在不同环境下表现出鲁棒性。与现有算法的对比分析表明,该算法具有更好的可扩展性和可用性,明显优于传统算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Internet of Things
Internet of Things Multiple-
CiteScore
3.60
自引率
5.10%
发文量
115
审稿时长
37 days
期刊介绍: Internet of Things; Engineering Cyber Physical Human Systems is a comprehensive journal encouraging cross collaboration between researchers, engineers and practitioners in the field of IoT & Cyber Physical Human Systems. The journal offers a unique platform to exchange scientific information on the entire breadth of technology, science, and societal applications of the IoT. The journal will place a high priority on timely publication, and provide a home for high quality. Furthermore, IOT is interested in publishing topical Special Issues on any aspect of IOT.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信