Novel 3D printed jig design for a smooth and accurate dome osteotomy: A case report

Q3 Medicine
Ervin Sethi, Sze Ern Tan, Michael Yam
{"title":"Novel 3D printed jig design for a smooth and accurate dome osteotomy: A case report","authors":"Ervin Sethi,&nbsp;Sze Ern Tan,&nbsp;Michael Yam","doi":"10.1016/j.stlm.2025.100210","DOIUrl":null,"url":null,"abstract":"<div><div>Femoral malunion with associated sagittal and coronal deformity poses significant challenges in achieving anatomical realignment and functional restoration. This case report describes a novel surgical technique utilizing patient-specific 3D planning and a custom-designed, 3D-printed curved cutting jig to perform a dome osteotomy for deformity correction in a 69-year-old male with a history of childhood femoral fracture and recent atypical femoral fracture associated with bisphosphonate use. Preoperative CT-based 3D modeling allowed accurate assessment of the deformity and precise planning of the osteotomy. A customized jig was engineered with a hemispherical slot to guide a smooth curved osteotomy, enabling biplanar correction while preserving limb length and optimizing bony contact for healing. Intraoperative execution was streamlined by jig-guided drilling and osteotomy, followed by intramedullary nail fixation. Postoperative recovery was uneventful, with early mobilization and successful alignment and union confirmed radiographically. This approach demonstrated the value of advanced 3D technologies in enhancing surgical precision, reducing operative time and radiation exposure, and improving clinical outcomes. It represents a promising option for complex femoral deformity correction when institutional resources permit.</div></div>","PeriodicalId":72210,"journal":{"name":"Annals of 3D printed medicine","volume":"19 ","pages":"Article 100210"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of 3D printed medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666964125000256","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Femoral malunion with associated sagittal and coronal deformity poses significant challenges in achieving anatomical realignment and functional restoration. This case report describes a novel surgical technique utilizing patient-specific 3D planning and a custom-designed, 3D-printed curved cutting jig to perform a dome osteotomy for deformity correction in a 69-year-old male with a history of childhood femoral fracture and recent atypical femoral fracture associated with bisphosphonate use. Preoperative CT-based 3D modeling allowed accurate assessment of the deformity and precise planning of the osteotomy. A customized jig was engineered with a hemispherical slot to guide a smooth curved osteotomy, enabling biplanar correction while preserving limb length and optimizing bony contact for healing. Intraoperative execution was streamlined by jig-guided drilling and osteotomy, followed by intramedullary nail fixation. Postoperative recovery was uneventful, with early mobilization and successful alignment and union confirmed radiographically. This approach demonstrated the value of advanced 3D technologies in enhancing surgical precision, reducing operative time and radiation exposure, and improving clinical outcomes. It represents a promising option for complex femoral deformity correction when institutional resources permit.
新颖的3D打印夹具设计为一个平滑和准确的圆顶截骨:一个案例报告
股骨畸形愈合伴矢状和冠状畸形是实现解剖重组和功能恢复的重大挑战。本病例报告描述了一种新颖的手术技术,利用患者特定的3D规划和定制设计的3D打印弯曲切割治具,对一名69岁男性患者进行穹状截骨手术,该患者患有儿童期股骨骨折和近期非典型股骨骨折,并使用双膦酸盐。术前基于ct的3D建模可以准确评估畸形和精确规划截骨。一个定制的夹具被设计成半球形槽来引导平滑弯曲的截骨,在保持肢体长度和优化骨接触愈合的同时实现双平面矫正。术中执行通过夹具引导钻孔和截骨,然后髓内钉固定。术后恢复顺利,早期活动和放射学证实成功对准和愈合。这种方法证明了先进的3D技术在提高手术精度、减少手术时间和辐射暴露以及改善临床结果方面的价值。当机构资源允许时,它代表了复杂股骨畸形矫正的一个有希望的选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals of 3D printed medicine
Annals of 3D printed medicine Medicine and Dentistry (General), Materials Science (General)
CiteScore
4.70
自引率
0.00%
发文量
0
审稿时长
131 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信