Sandra Rose Biby, Vivek Surendran, Lakshminath Kundanati
{"title":"Mycelium biocomposites from agricultural and paper waste: Sustainable alternative to plastic foam based secondary packaging","authors":"Sandra Rose Biby, Vivek Surendran, Lakshminath Kundanati","doi":"10.1016/j.biteb.2025.102177","DOIUrl":null,"url":null,"abstract":"<div><div>Plastic foams like Expanded polystyrene (EPS) and Expanded Polyethylene (EPE), though common in packaging, are environmentally harmful due to their non-biodegradable nature—especially in regions with poor waste management. Mycelium-based biocomposites, grown from fungi such as <em>Ganoderma lucidum</em> and <em>Pleurotus ostreatus</em> on agricultural waste substrates, offer a sustainable alternative. This study compares their performance with conventional foams using substrates like sawdust, cardboard, paper, cocopith, and hay. <em>Ganoderma</em> on cardboard showed the highest compressive strength (2.72 MPa), outperforming Expanded polystyrene (EPS) (0.281 MPa) and Expanded Polyethylene (EPE) (0.069 MPa). SEM analysis revealed denser hyphae and lower porosity in stronger samples. Water absorption and contact angle tests confirmed greater hydrophobicity in dense composites. Biodegradation tests showed up to 80 % weight loss in six weeks. Results highlight the critical roles of fungal species and substrate in determining mechanical strength, water resistance, and biodegradability. Mycelium-based composites emerge as eco-friendly alternatives for packaging, with potential to replace harmful plastic foams.</div></div>","PeriodicalId":8947,"journal":{"name":"Bioresource Technology Reports","volume":"31 ","pages":"Article 102177"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresource Technology Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589014X25001598","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0
Abstract
Plastic foams like Expanded polystyrene (EPS) and Expanded Polyethylene (EPE), though common in packaging, are environmentally harmful due to their non-biodegradable nature—especially in regions with poor waste management. Mycelium-based biocomposites, grown from fungi such as Ganoderma lucidum and Pleurotus ostreatus on agricultural waste substrates, offer a sustainable alternative. This study compares their performance with conventional foams using substrates like sawdust, cardboard, paper, cocopith, and hay. Ganoderma on cardboard showed the highest compressive strength (2.72 MPa), outperforming Expanded polystyrene (EPS) (0.281 MPa) and Expanded Polyethylene (EPE) (0.069 MPa). SEM analysis revealed denser hyphae and lower porosity in stronger samples. Water absorption and contact angle tests confirmed greater hydrophobicity in dense composites. Biodegradation tests showed up to 80 % weight loss in six weeks. Results highlight the critical roles of fungal species and substrate in determining mechanical strength, water resistance, and biodegradability. Mycelium-based composites emerge as eco-friendly alternatives for packaging, with potential to replace harmful plastic foams.