Ultrahigh-strength Cu-10Fe-0.2Mg in situ composites via ultra-nano precipitation within nanolamellar architectures

IF 3.8 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
W. Chen , X.N. Hu , J. Jiang , J.W. Wang , J.L. Guo , D. Wu , J. Zou , Z. Hu , Q. Hu
{"title":"Ultrahigh-strength Cu-10Fe-0.2Mg in situ composites via ultra-nano precipitation within nanolamellar architectures","authors":"W. Chen ,&nbsp;X.N. Hu ,&nbsp;J. Jiang ,&nbsp;J.W. Wang ,&nbsp;J.L. Guo ,&nbsp;D. Wu ,&nbsp;J. Zou ,&nbsp;Z. Hu ,&nbsp;Q. Hu","doi":"10.1016/j.vacuum.2025.114511","DOIUrl":null,"url":null,"abstract":"<div><div>Cu-Fe in situ composites face Hall-Petch strengthening saturation when Fe filaments reach nanoscale dimensions. The present study addresses this limitation through a strategy of “ultra-nano precipitation within nanolamellar architectures”. By adding 0.2 wt% Mg to a Cu-10Fe alloy and applying multi-stage thermo-mechanical processing, a Cu-10Fe-0.2Mg in situ composite was developed, featuring ultrafine CuMg<sub>2</sub> nanoprecipitates (∼6.8 nm) embedded in the Cu nanolamellar matrix. This optimized material achieves a 23 % strength enhancement compared to its Mg-free counterpart, while retaining 96 % of the base conductivity and comparable uniform elongation. The improvement in mechanical properties can be attributed to the Orowan strengthening effect from the introduced CuMg<sub>2</sub> nanoprecipitates and their ability to promote work hardening. This ultra-nano precipitation within nanolamellae strategy is envisaged to be readily adaptable to other Cu-bcc in situ composites, offering broad implications for next-generation material engineering.</div></div>","PeriodicalId":23559,"journal":{"name":"Vacuum","volume":"240 ","pages":"Article 114511"},"PeriodicalIF":3.8000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vacuum","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0042207X25005019","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Cu-Fe in situ composites face Hall-Petch strengthening saturation when Fe filaments reach nanoscale dimensions. The present study addresses this limitation through a strategy of “ultra-nano precipitation within nanolamellar architectures”. By adding 0.2 wt% Mg to a Cu-10Fe alloy and applying multi-stage thermo-mechanical processing, a Cu-10Fe-0.2Mg in situ composite was developed, featuring ultrafine CuMg2 nanoprecipitates (∼6.8 nm) embedded in the Cu nanolamellar matrix. This optimized material achieves a 23 % strength enhancement compared to its Mg-free counterpart, while retaining 96 % of the base conductivity and comparable uniform elongation. The improvement in mechanical properties can be attributed to the Orowan strengthening effect from the introduced CuMg2 nanoprecipitates and their ability to promote work hardening. This ultra-nano precipitation within nanolamellae strategy is envisaged to be readily adaptable to other Cu-bcc in situ composites, offering broad implications for next-generation material engineering.
基于纳米层状结构的超高强度Cu-10Fe-0.2Mg原位复合材料
Cu-Fe原位复合材料在铁长丝达到纳米尺度时面临Hall-Petch强化饱和。本研究通过“纳米层状结构中的超纳米沉淀”策略解决了这一限制。通过在Cu- 10fe合金中添加0.2 wt%的Mg,并进行多阶段热机械加工,制备了Cu- 10fe -0.2Mg原位复合材料,其超细CuMg2纳米沉淀物(~ 6.8 nm)嵌入Cu纳米层状基体中。与无镁材料相比,这种优化材料的强度提高了23%,同时保持了96%的基本导电性和相当的均匀伸长率。其力学性能的改善可归因于引入的CuMg2纳米沉淀物的Orowan强化效应及其促进加工硬化的能力。这种纳米层内的超纳米沉淀策略被设想为很容易适用于其他Cu-bcc原位复合材料,为下一代材料工程提供广泛的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Vacuum
Vacuum 工程技术-材料科学:综合
CiteScore
6.80
自引率
17.50%
发文量
0
审稿时长
34 days
期刊介绍: Vacuum is an international rapid publications journal with a focus on short communication. All papers are peer-reviewed, with the review process for short communication geared towards very fast turnaround times. The journal also published full research papers, thematic issues and selected papers from leading conferences. A report in Vacuum should represent a major advance in an area that involves a controlled environment at pressures of one atmosphere or below. The scope of the journal includes: 1. Vacuum; original developments in vacuum pumping and instrumentation, vacuum measurement, vacuum gas dynamics, gas-surface interactions, surface treatment for UHV applications and low outgassing, vacuum melting, sintering, and vacuum metrology. Technology and solutions for large-scale facilities (e.g., particle accelerators and fusion devices). New instrumentation ( e.g., detectors and electron microscopes). 2. Plasma science; advances in PVD, CVD, plasma-assisted CVD, ion sources, deposition processes and analysis. 3. Surface science; surface engineering, surface chemistry, surface analysis, crystal growth, ion-surface interactions and etching, nanometer-scale processing, surface modification. 4. Materials science; novel functional or structural materials. Metals, ceramics, and polymers. Experiments, simulations, and modelling for understanding structure-property relationships. Thin films and coatings. Nanostructures and ion implantation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信