Phosphorus-doped nanocrystalline silicon as electron selective contact for epitaxial-free germanium thermophotovoltaic devices

IF 6.3 2区 材料科学 Q2 ENERGY & FUELS
M. Gamel , G. Rivera , G. López , M. Garín , I. Martín
{"title":"Phosphorus-doped nanocrystalline silicon as electron selective contact for epitaxial-free germanium thermophotovoltaic devices","authors":"M. Gamel ,&nbsp;G. Rivera ,&nbsp;G. López ,&nbsp;M. Garín ,&nbsp;I. Martín","doi":"10.1016/j.solmat.2025.113778","DOIUrl":null,"url":null,"abstract":"<div><div>Crystalline germanium (c-Ge) has emerged as a promising, cost-effective absorber material for thermophotovoltaic (TPV) cells. As with any other photovoltaic (PV) device, the development of high-quality selective contacts is crucial. Moreover, to maintain a low-cost strategy any epitaxially-grown layer should be avoided. In this work, we investigate the deposition of n-type nanocrystalline silicon (nc-Si(n)) onto p-type c-Ge substrates using Plasma-Enhanced Chemical Vapor Deposition to form nc-Si(n)/c-Ge(p) heterojunctions that act as electron-selective contact. The deposition parameters, SiH<sub>4</sub>+PH<sub>3</sub> flow and RF power, are investigated and material characteristics are analyzed via Raman spectroscopy, Transfer Length Method and Hall effect measurement, confirming the nanocrystalline quality with high conductivity (42 Ω<sup>−1</sup> cm<sup>−1</sup>) and low activation energy (0.013 eV) of the nc-Si(n) layer. The interface quality of the heterojunction is evaluated by measuring the effective carrier lifetime, revealing that introducing a thin intrinsic amorphous silicon interlayer significantly enhances passivation but degrades carrier transport through the heterojunction. The developed nc-Si(n) layers are deposited onto c-Ge substrates with doping concentrations of 2 × 10<sup>15</sup> cm<sup>3</sup> (LD) and 2 × 10<sup>16</sup> cm<sup>3</sup> (HD) to fabricate c-Ge TPV cells with full rear aluminum contact. The results indicate that HD devices exhibit three times lower series resistance than LD devices, primarily due to reduced rear contact resistivity. On the other hand, LD devices show ∼5 % higher IR reflectance, attributed to lower free carrier absorption. Modelling the HD and LD TPV devices predicts TPV efficiencies of ∼6.5 % and ∼2.9 %, respectively.</div></div>","PeriodicalId":429,"journal":{"name":"Solar Energy Materials and Solar Cells","volume":"292 ","pages":"Article 113778"},"PeriodicalIF":6.3000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy Materials and Solar Cells","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927024825003794","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Crystalline germanium (c-Ge) has emerged as a promising, cost-effective absorber material for thermophotovoltaic (TPV) cells. As with any other photovoltaic (PV) device, the development of high-quality selective contacts is crucial. Moreover, to maintain a low-cost strategy any epitaxially-grown layer should be avoided. In this work, we investigate the deposition of n-type nanocrystalline silicon (nc-Si(n)) onto p-type c-Ge substrates using Plasma-Enhanced Chemical Vapor Deposition to form nc-Si(n)/c-Ge(p) heterojunctions that act as electron-selective contact. The deposition parameters, SiH4+PH3 flow and RF power, are investigated and material characteristics are analyzed via Raman spectroscopy, Transfer Length Method and Hall effect measurement, confirming the nanocrystalline quality with high conductivity (42 Ω−1 cm−1) and low activation energy (0.013 eV) of the nc-Si(n) layer. The interface quality of the heterojunction is evaluated by measuring the effective carrier lifetime, revealing that introducing a thin intrinsic amorphous silicon interlayer significantly enhances passivation but degrades carrier transport through the heterojunction. The developed nc-Si(n) layers are deposited onto c-Ge substrates with doping concentrations of 2 × 1015 cm3 (LD) and 2 × 1016 cm3 (HD) to fabricate c-Ge TPV cells with full rear aluminum contact. The results indicate that HD devices exhibit three times lower series resistance than LD devices, primarily due to reduced rear contact resistivity. On the other hand, LD devices show ∼5 % higher IR reflectance, attributed to lower free carrier absorption. Modelling the HD and LD TPV devices predicts TPV efficiencies of ∼6.5 % and ∼2.9 %, respectively.
磷掺杂纳米晶硅作为无外延锗热光伏器件的电子选择触点
晶体锗(c-Ge)已成为一种有前途的、具有成本效益的热光伏(TPV)电池吸收材料。与任何其他光伏(PV)设备一样,高质量选择性触点的发展至关重要。此外,为了保持低成本策略,任何外延生长层都应该避免。在这项工作中,我们研究了使用等离子体增强化学气相沉积技术将n型纳米晶硅(nc-Si(n))沉积到p型c-Ge衬底上,形成nc-Si(n)/c-Ge(p)异质结,作为电子选择接触。研究了沉积参数SiH4+PH3流量和射频功率,并通过拉曼光谱、传递长度法和霍尔效应分析了材料特性,证实了纳米硅(n)层具有高电导率(42 Ω−1 cm−1)和低活化能(0.013 eV)的纳米晶质量。通过测量有效载流子寿命来评估异质结的界面质量,揭示了引入薄的本征非晶硅中间层显著增强了钝化,但降低了载流子通过异质结的输运。将所制备的nc-Si(n)层沉积在掺杂浓度为2 × 1015 cm3 (LD)和2 × 1016 cm3 (HD)的c-Ge衬底上,制备出背面全铝接触的c-Ge TPV电池。结果表明,HD器件的串联电阻比LD器件低三倍,主要是由于降低了后部接触电阻率。另一方面,由于较低的自由载流子吸收,LD器件的红外反射率提高了~ 5%。对HD和LD TPV器件的建模预测TPV效率分别为~ 6.5%和~ 2.9%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Solar Energy Materials and Solar Cells
Solar Energy Materials and Solar Cells 工程技术-材料科学:综合
CiteScore
12.60
自引率
11.60%
发文量
513
审稿时长
47 days
期刊介绍: Solar Energy Materials & Solar Cells is intended as a vehicle for the dissemination of research results on materials science and technology related to photovoltaic, photothermal and photoelectrochemical solar energy conversion. Materials science is taken in the broadest possible sense and encompasses physics, chemistry, optics, materials fabrication and analysis for all types of materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信