{"title":"Learning an inverse thermodynamic model for Pneumatic Artificial Muscles control","authors":"G. Wang , R. Chalard , J.A. Cifuentes , M.T. Pham","doi":"10.1016/j.mechatronics.2025.103359","DOIUrl":null,"url":null,"abstract":"<div><div>Pneumatic Artificial Muscles (PAMs) are highly nonlinear actuators widely used in robotics, rehabilitation, and other dynamic applications. Their complex behavior poses significant challenges for traditional system identification methods. Although machine learning techniques have shown remarkable success in modeling nonlinear systems, their black-box nature often leads to interpretability issues and susceptibility to overfitting. This study proposes a novel hybrid modeling approach that combines the strengths of analytical models with neural networks to capture the inverse thermodynamic behavior of PAMs. The results demonstrate that the hybrid model outperformed both analytical and purely neural network models. The obtained models were further used for model-based control design and the results show that the application of hybrid model improved the tracking performance.</div></div>","PeriodicalId":49842,"journal":{"name":"Mechatronics","volume":"110 ","pages":"Article 103359"},"PeriodicalIF":3.1000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechatronics","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0957415825000686","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Pneumatic Artificial Muscles (PAMs) are highly nonlinear actuators widely used in robotics, rehabilitation, and other dynamic applications. Their complex behavior poses significant challenges for traditional system identification methods. Although machine learning techniques have shown remarkable success in modeling nonlinear systems, their black-box nature often leads to interpretability issues and susceptibility to overfitting. This study proposes a novel hybrid modeling approach that combines the strengths of analytical models with neural networks to capture the inverse thermodynamic behavior of PAMs. The results demonstrate that the hybrid model outperformed both analytical and purely neural network models. The obtained models were further used for model-based control design and the results show that the application of hybrid model improved the tracking performance.
期刊介绍:
Mechatronics is the synergistic combination of precision mechanical engineering, electronic control and systems thinking in the design of products and manufacturing processes. It relates to the design of systems, devices and products aimed at achieving an optimal balance between basic mechanical structure and its overall control. The purpose of this journal is to provide rapid publication of topical papers featuring practical developments in mechatronics. It will cover a wide range of application areas including consumer product design, instrumentation, manufacturing methods, computer integration and process and device control, and will attract a readership from across the industrial and academic research spectrum. Particular importance will be attached to aspects of innovation in mechatronics design philosophy which illustrate the benefits obtainable by an a priori integration of functionality with embedded microprocessor control. A major item will be the design of machines, devices and systems possessing a degree of computer based intelligence. The journal seeks to publish research progress in this field with an emphasis on the applied rather than the theoretical. It will also serve the dual role of bringing greater recognition to this important area of engineering.