Seungrae Cho , Hyemi Lee , Sieun Je , Juho Lee , Suwon Bae , Tae Ann Kim , Jaejun Lee
{"title":"Enhancing shock wave energy dissipation in metallosupramolecular polymer by tuning metal-imidazole coordination interactions","authors":"Seungrae Cho , Hyemi Lee , Sieun Je , Juho Lee , Suwon Bae , Tae Ann Kim , Jaejun Lee","doi":"10.1016/j.polymertesting.2025.108885","DOIUrl":null,"url":null,"abstract":"<div><div>The development of materials capable of shock wave energy dissipation (SWED) is critical for modern protective applications. In this study, metallosupramolecular poly(dimethylsiloxane) (PDMS) networks cross-linked with Zn<sup>2+</sup>, Cu<sup>2+</sup>, and Ni<sup>2+</sup> ions and imidazole ligands were designed to enhance SWED by leveraging the dynamic nature of metal-ligand coordination bonds. A laser-induced shock wave technique revealed that Cu<sup>2+</sup> cross-linked PDMS exhibited superior SWED performance, likely due to coordination rearrangement dynamics occurring within a relevant timescale for shock wave dissipation. Time-temperature superposition (TTS) analysis indicated that while associative ligand exchange may assist in shock attenuation, metal-ligand bond dissociation plays a more dominant role under extreme shock conditions. DFT calculations further demonstrated that coordination geometry significantly influences SWED performance, with Cu<sup>2+</sup> in square planar (trans) coordination exhibiting greater rupture susceptibility. These findings highlight the tunability of metal-ligand interactions as an effective strategy for optimizing energy dissipation in metallosupramolecular polymers. Additionally, they provide a comprehensive SWED mechanism analysis by synergistically integrating a laser-induced shock wave test and DFT calculations.</div></div>","PeriodicalId":20628,"journal":{"name":"Polymer Testing","volume":"150 ","pages":"Article 108885"},"PeriodicalIF":6.0000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Testing","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142941825001990","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0
Abstract
The development of materials capable of shock wave energy dissipation (SWED) is critical for modern protective applications. In this study, metallosupramolecular poly(dimethylsiloxane) (PDMS) networks cross-linked with Zn2+, Cu2+, and Ni2+ ions and imidazole ligands were designed to enhance SWED by leveraging the dynamic nature of metal-ligand coordination bonds. A laser-induced shock wave technique revealed that Cu2+ cross-linked PDMS exhibited superior SWED performance, likely due to coordination rearrangement dynamics occurring within a relevant timescale for shock wave dissipation. Time-temperature superposition (TTS) analysis indicated that while associative ligand exchange may assist in shock attenuation, metal-ligand bond dissociation plays a more dominant role under extreme shock conditions. DFT calculations further demonstrated that coordination geometry significantly influences SWED performance, with Cu2+ in square planar (trans) coordination exhibiting greater rupture susceptibility. These findings highlight the tunability of metal-ligand interactions as an effective strategy for optimizing energy dissipation in metallosupramolecular polymers. Additionally, they provide a comprehensive SWED mechanism analysis by synergistically integrating a laser-induced shock wave test and DFT calculations.
期刊介绍:
Polymer Testing focuses on the testing, analysis and characterization of polymer materials, including both synthetic and natural or biobased polymers. Novel testing methods and the testing of novel polymeric materials in bulk, solution and dispersion is covered. In addition, we welcome the submission of the testing of polymeric materials for a wide range of applications and industrial products as well as nanoscale characterization.
The scope includes but is not limited to the following main topics:
Novel testing methods and Chemical analysis
• mechanical, thermal, electrical, chemical, imaging, spectroscopy, scattering and rheology
Physical properties and behaviour of novel polymer systems
• nanoscale properties, morphology, transport properties
Degradation and recycling of polymeric materials when combined with novel testing or characterization methods
• degradation, biodegradation, ageing and fire retardancy
Modelling and Simulation work will be only considered when it is linked to new or previously published experimental results.