{"title":"Mapping basic properties of Danish sandy soils using on-the-go proximal sensors and terrain attributes","authors":"Ameesh Khatkar, Amélie Beucher, Triven Koganti, Lars Juhl Munkholm, Mathieu Lamandé","doi":"10.1016/j.geodrs.2025.e00981","DOIUrl":null,"url":null,"abstract":"<div><div>On-the-go proximal soil sensing based on geophysical sensors is increasingly recognized as the ‘gold standard’ in digital soil mapping due to its capacity to generate high-resolution maps of soil properties at the field scale. However, studies of their limitations are scarce. In this study, we evaluated the suitability of electromagnetic induction (EMI) and gamma-ray spectroscopy (GRS), along with terrain attributes (TA), to predict four soil properties, i.e. clay content, total carbon, bulk density, and soil water content. Soil samples were collected from the top (15 cm depth) and subsoil (40 cm depth) at 69 points distributed in three sandy arable fields. Soil properties were estimated through multiple linear regression (MLR) and cross-validated using the Leave-One-Out Cross-Validation (LOOCV). The MLR models were then filtered based on Lin's concordance correlation coefficient (LCCC), coefficient of determination (R<sup>2</sup>) and normalized root mean square error (nRMSE). The results indicated that estimating the soil properties in sandy soils is challenging, specifically in subsoil, as reliable models were achieved only for topsoil in two fields. Inverting the EMI data improved modelling results compared to using raw EMI data. Despite the challenges encountered, predictors from the EMI and GRS emerged as key contributors to models with the highest performance, indicating the potential of on-the-go geophysical sensors for generating high-resolution digital soil maps.</div></div>","PeriodicalId":56001,"journal":{"name":"Geoderma Regional","volume":"42 ","pages":"Article e00981"},"PeriodicalIF":3.3000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoderma Regional","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352009425000665","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
On-the-go proximal soil sensing based on geophysical sensors is increasingly recognized as the ‘gold standard’ in digital soil mapping due to its capacity to generate high-resolution maps of soil properties at the field scale. However, studies of their limitations are scarce. In this study, we evaluated the suitability of electromagnetic induction (EMI) and gamma-ray spectroscopy (GRS), along with terrain attributes (TA), to predict four soil properties, i.e. clay content, total carbon, bulk density, and soil water content. Soil samples were collected from the top (15 cm depth) and subsoil (40 cm depth) at 69 points distributed in three sandy arable fields. Soil properties were estimated through multiple linear regression (MLR) and cross-validated using the Leave-One-Out Cross-Validation (LOOCV). The MLR models were then filtered based on Lin's concordance correlation coefficient (LCCC), coefficient of determination (R2) and normalized root mean square error (nRMSE). The results indicated that estimating the soil properties in sandy soils is challenging, specifically in subsoil, as reliable models were achieved only for topsoil in two fields. Inverting the EMI data improved modelling results compared to using raw EMI data. Despite the challenges encountered, predictors from the EMI and GRS emerged as key contributors to models with the highest performance, indicating the potential of on-the-go geophysical sensors for generating high-resolution digital soil maps.
期刊介绍:
Global issues require studies and solutions on national and regional levels. Geoderma Regional focuses on studies that increase understanding and advance our scientific knowledge of soils in all regions of the world. The journal embraces every aspect of soil science and welcomes reviews of regional progress.