Siyuan Lu , Kangwei Xu , Peng Xie , Rui Wang , Yuanqing Cheng
{"title":"Testing and fault tolerance techniques for carbon nanotube-based FPGAs","authors":"Siyuan Lu , Kangwei Xu , Peng Xie , Rui Wang , Yuanqing Cheng","doi":"10.1016/j.vlsi.2025.102444","DOIUrl":null,"url":null,"abstract":"<div><div>As the semiconductor manufacturing process technology node shrinks into the nanometer-scale, the CMOS-based Field Programmable Gate Arrays (FPGAs) face big challenges in scalability of performance and power consumption. Multi-walled Carbon Nanotube (MWCNT) serves as a promising candidate for Cu interconnects thanks to the superior conductivity. Moreover, Carbon Nanotube Field Transistor (CNFET) also emerges as a prospective alternative to the conventional CMOS device because of high power efficiency and large noise margin. The combination of MWCNT and CNFET enables the promising CNT-based FPGAs. However, the MWCNT interconnects exhibit significant process variations due to immature fabrication process, leading to delay faults. Also, the non-ideal CNFET fabrication process may generate a few metallic CNTs (m-CNTs), rendering correlated faulty blocks. In this article, we propose a ring oscillator (RO) based testing technique to detect delay faults due to the process variation of MWCNT interconnects. Furthermore, we propose an effective testing technique for the carry chains in CLBs, and an improved circuit design based on the lookup table (LUT) is applied to speed up the fault testing of CNT-based FPGAs. In addition, we propose a testing algorithm to detect m-CNTs in CLBs. Finally, we propose a redundant spare row sharing architecture to improve the yield of CNT-based FPGA further. Experimental results show that the test time for a 6-input LUT can be reduced by 35.49% compared with conventional testing, and the proposed algorithm can achieve a high test coverage with little overhead. The proposed redundant architecture can repair the faulty segment effectively and efficiently.</div></div>","PeriodicalId":54973,"journal":{"name":"Integration-The Vlsi Journal","volume":"104 ","pages":"Article 102444"},"PeriodicalIF":2.2000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integration-The Vlsi Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167926025001014","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
As the semiconductor manufacturing process technology node shrinks into the nanometer-scale, the CMOS-based Field Programmable Gate Arrays (FPGAs) face big challenges in scalability of performance and power consumption. Multi-walled Carbon Nanotube (MWCNT) serves as a promising candidate for Cu interconnects thanks to the superior conductivity. Moreover, Carbon Nanotube Field Transistor (CNFET) also emerges as a prospective alternative to the conventional CMOS device because of high power efficiency and large noise margin. The combination of MWCNT and CNFET enables the promising CNT-based FPGAs. However, the MWCNT interconnects exhibit significant process variations due to immature fabrication process, leading to delay faults. Also, the non-ideal CNFET fabrication process may generate a few metallic CNTs (m-CNTs), rendering correlated faulty blocks. In this article, we propose a ring oscillator (RO) based testing technique to detect delay faults due to the process variation of MWCNT interconnects. Furthermore, we propose an effective testing technique for the carry chains in CLBs, and an improved circuit design based on the lookup table (LUT) is applied to speed up the fault testing of CNT-based FPGAs. In addition, we propose a testing algorithm to detect m-CNTs in CLBs. Finally, we propose a redundant spare row sharing architecture to improve the yield of CNT-based FPGA further. Experimental results show that the test time for a 6-input LUT can be reduced by 35.49% compared with conventional testing, and the proposed algorithm can achieve a high test coverage with little overhead. The proposed redundant architecture can repair the faulty segment effectively and efficiently.
期刊介绍:
Integration''s aim is to cover every aspect of the VLSI area, with an emphasis on cross-fertilization between various fields of science, and the design, verification, test and applications of integrated circuits and systems, as well as closely related topics in process and device technologies. Individual issues will feature peer-reviewed tutorials and articles as well as reviews of recent publications. The intended coverage of the journal can be assessed by examining the following (non-exclusive) list of topics:
Specification methods and languages; Analog/Digital Integrated Circuits and Systems; VLSI architectures; Algorithms, methods and tools for modeling, simulation, synthesis and verification of integrated circuits and systems of any complexity; Embedded systems; High-level synthesis for VLSI systems; Logic synthesis and finite automata; Testing, design-for-test and test generation algorithms; Physical design; Formal verification; Algorithms implemented in VLSI systems; Systems engineering; Heterogeneous systems.