{"title":"2-minimal subgroups in finite exceptional groups of Lie type","authors":"Chris Parker , Peter Rowley","doi":"10.1016/j.jalgebra.2025.06.004","DOIUrl":null,"url":null,"abstract":"<div><div>Suppose <em>G</em> is a finite group, <em>S</em> a Sylow 2-subgroup of <em>G</em> and <span><math><mi>B</mi><mo>=</mo><msub><mrow><mi>N</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>(</mo><mi>S</mi><mo>)</mo></math></span>. Then a subgroup <em>P</em> of <em>G</em> is a 2-minimal subgroup of <em>G</em> with respect to <em>B</em> if and only if <em>B</em> is contained in a unique maximal subgroup of <em>P</em>. Here the 2-minimal subgroups of the finite simple groups of exceptional Lie type are classified. This classification yields detailed descriptions of the 2-minimal subgroups and, by way of illustration, we list explicitly the 2-minimal subgroups for <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mn>3</mn><mo>)</mo></math></span>, <span><math><msub><mrow><mi>F</mi></mrow><mrow><mn>4</mn></mrow></msub><mo>(</mo><mn>3</mn><mo>)</mo></math></span>, <span><math><msub><mrow><mi>E</mi></mrow><mrow><mn>6</mn></mrow></msub><mo>(</mo><mn>19</mn><mo>)</mo></math></span>, <span><math><msub><mrow><mi>E</mi></mrow><mrow><mn>7</mn></mrow></msub><mo>(</mo><msup><mrow><mn>5</mn></mrow><mrow><mn>3</mn></mrow></msup><mo>)</mo></math></span> and <span><math><msub><mrow><mi>E</mi></mrow><mrow><mn>8</mn></mrow></msub><mo>(</mo><mn>11</mn><mo>)</mo></math></span>.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"681 ","pages":"Pages 367-400"},"PeriodicalIF":0.8000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869325003564","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Suppose G is a finite group, S a Sylow 2-subgroup of G and . Then a subgroup P of G is a 2-minimal subgroup of G with respect to B if and only if B is contained in a unique maximal subgroup of P. Here the 2-minimal subgroups of the finite simple groups of exceptional Lie type are classified. This classification yields detailed descriptions of the 2-minimal subgroups and, by way of illustration, we list explicitly the 2-minimal subgroups for , , , and .
期刊介绍:
The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.