A criterion for holomorphic Lie algebroid connections

IF 0.8 2区 数学 Q2 MATHEMATICS
David Alfaya , Indranil Biswas , Pradip Kumar , Anoop Singh
{"title":"A criterion for holomorphic Lie algebroid connections","authors":"David Alfaya ,&nbsp;Indranil Biswas ,&nbsp;Pradip Kumar ,&nbsp;Anoop Singh","doi":"10.1016/j.jalgebra.2025.05.020","DOIUrl":null,"url":null,"abstract":"<div><div>Given a holomorphic Lie algebroid <span><math><mo>(</mo><mi>V</mi><mo>,</mo><mspace></mspace><mi>ϕ</mi><mo>)</mo></math></span> on a compact connected Riemann surface <em>X</em>, we give a necessary and sufficient condition for a holomorphic vector bundle <em>E</em> on <em>X</em> to admit a holomorphic Lie algebroid connection. If <span><math><mo>(</mo><mi>V</mi><mo>,</mo><mspace></mspace><mi>ϕ</mi><mo>)</mo></math></span> is nonsplit, then every holomorphic vector bundle on <em>X</em> admits a holomorphic Lie algebroid connection for <span><math><mo>(</mo><mi>V</mi><mo>,</mo><mspace></mspace><mi>ϕ</mi><mo>)</mo></math></span>. If <span><math><mo>(</mo><mi>V</mi><mo>,</mo><mspace></mspace><mi>ϕ</mi><mo>)</mo></math></span> is split, then a holomorphic vector bundle <em>E</em> on <em>X</em> admits a holomorphic Lie algebroid connection if and only if the degree of each indecomposable component of <em>E</em> is zero.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"681 ","pages":"Pages 343-366"},"PeriodicalIF":0.8000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869325003230","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Given a holomorphic Lie algebroid (V,ϕ) on a compact connected Riemann surface X, we give a necessary and sufficient condition for a holomorphic vector bundle E on X to admit a holomorphic Lie algebroid connection. If (V,ϕ) is nonsplit, then every holomorphic vector bundle on X admits a holomorphic Lie algebroid connection for (V,ϕ). If (V,ϕ) is split, then a holomorphic vector bundle E on X admits a holomorphic Lie algebroid connection if and only if the degree of each indecomposable component of E is zero.
李代数全纯连接的一个判据
给定紧连通Riemann曲面X上的全纯李代数(V, φ),给出了X上的全纯向量束E允许全纯李代数连通的充分必要条件。如果(V, φ)是非分裂的,则X上的每个全纯向量束对于(V, φ)都允许一个全纯李代数连接。如果(V, φ)被分割,则X上的全纯向量束E当且仅当E的每个不可分解分量的度数为零时允许全纯李代数连接。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Algebra
Journal of Algebra 数学-数学
CiteScore
1.50
自引率
22.20%
发文量
414
审稿时长
2-4 weeks
期刊介绍: The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信