Modeling and optimizing deep brain stimulation to enhance gait in Parkinson’s disease: personalized treatment with neurophysiological insights

IF 6.7 1区 医学 Q1 NEUROSCIENCES
Hamid Fekri Azgomi, Kenneth H. Louie, Jessica E. Bath, Kara N. Presbrey, Jannine P. Balakid, Jacob H. Marks, Thomas A. Wozny, Nicholas B. Galifianakis, Marta San Luciano, Simon Little, Philip A. Starr, Doris D. Wang
{"title":"Modeling and optimizing deep brain stimulation to enhance gait in Parkinson’s disease: personalized treatment with neurophysiological insights","authors":"Hamid Fekri Azgomi, Kenneth H. Louie, Jessica E. Bath, Kara N. Presbrey, Jannine P. Balakid, Jacob H. Marks, Thomas A. Wozny, Nicholas B. Galifianakis, Marta San Luciano, Simon Little, Philip A. Starr, Doris D. Wang","doi":"10.1038/s41531-025-00990-5","DOIUrl":null,"url":null,"abstract":"<p>The effects of deep brain stimulation (DBS) on gait in Parkinson’s disease (PD) are variable due to challenges in gait assessment and limited understanding of stimulation parameters’ impacts on neural activity. We developed a data-driven approach to identify optimal DBS parameters to improve gait and uncover neurophysiological signatures of gait enhancement. Field potentials from the globus pallidus (GP) and motor cortex were recorded in three patients with PD (PwP) using implanted bidirectional neural stimulators during overground walking. We developed a Walking Performance Index (WPI) to assess gait metrics. DBS parameters were systematically varied to study their impacts on gait and neural dynamics. We were able to predict and identify personalized DBS settings that improved the WPI using a Gaussian Process Regressor. Improved walking correlated with reduced pallidal beta power during key gait phases. These findings, along with identified person-specific neural spectral biomarkers, underscore the importance of personalized, data-driven interventions for gait enhancement in PwP. ClinicalTrials.gov registration: NCT-03582891.</p>","PeriodicalId":19706,"journal":{"name":"NPJ Parkinson's Disease","volume":"38 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Parkinson's Disease","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41531-025-00990-5","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The effects of deep brain stimulation (DBS) on gait in Parkinson’s disease (PD) are variable due to challenges in gait assessment and limited understanding of stimulation parameters’ impacts on neural activity. We developed a data-driven approach to identify optimal DBS parameters to improve gait and uncover neurophysiological signatures of gait enhancement. Field potentials from the globus pallidus (GP) and motor cortex were recorded in three patients with PD (PwP) using implanted bidirectional neural stimulators during overground walking. We developed a Walking Performance Index (WPI) to assess gait metrics. DBS parameters were systematically varied to study their impacts on gait and neural dynamics. We were able to predict and identify personalized DBS settings that improved the WPI using a Gaussian Process Regressor. Improved walking correlated with reduced pallidal beta power during key gait phases. These findings, along with identified person-specific neural spectral biomarkers, underscore the importance of personalized, data-driven interventions for gait enhancement in PwP. ClinicalTrials.gov registration: NCT-03582891.

Abstract Image

建模和优化脑深部刺激以增强帕金森病的步态:神经生理学见解的个性化治疗
由于步态评估方面的挑战以及对刺激参数对神经活动影响的了解有限,脑深部电刺激(DBS)对帕金森病(PD)患者步态的影响是可变的。我们开发了一种数据驱动的方法来识别最佳DBS参数以改善步态并揭示步态增强的神经生理特征。用植入的双向神经刺激器记录了3例PD (PwP)患者在地上行走时苍白球(GP)和运动皮层的场电位。我们开发了步行性能指数(WPI)来评估步态指标。系统地改变DBS参数,研究其对步态和神经动力学的影响。我们能够预测和识别个性化的DBS设置,使用高斯过程回归器改善WPI。在关键的步态阶段,步行的改善与减弱的苍白质β能量相关。这些发现,以及已确定的个人特异性神经谱生物标志物,强调了个性化、数据驱动的干预措施对PwP患者步态增强的重要性。ClinicalTrials.gov注册:NCT-03582891。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
NPJ Parkinson's Disease
NPJ Parkinson's Disease Medicine-Neurology (clinical)
CiteScore
9.80
自引率
5.70%
发文量
156
审稿时长
11 weeks
期刊介绍: npj Parkinson's Disease is a comprehensive open access journal that covers a wide range of research areas related to Parkinson's disease. It publishes original studies in basic science, translational research, and clinical investigations. The journal is dedicated to advancing our understanding of Parkinson's disease by exploring various aspects such as anatomy, etiology, genetics, cellular and molecular physiology, neurophysiology, epidemiology, and therapeutic development. By providing free and immediate access to the scientific and Parkinson's disease community, npj Parkinson's Disease promotes collaboration and knowledge sharing among researchers and healthcare professionals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信