{"title":"Nonadiabatic Dynamics with Constrained Nuclear-Electronic Orbital Theory","authors":"Zhe Liu, Zehua Chen, Yang Yang","doi":"10.1021/acs.jpclett.5c01020","DOIUrl":null,"url":null,"abstract":"Incorporating nuclear quantum effects into nonadiabatic dynamics remains a significant challenge. Herein we introduce new nonadiabatic dynamics approaches based on the recently developed constrained nuclear-electronic orbital (CNEO) theory. The CNEO approach integrates nuclear quantum effects, particularly quantum nuclear delocalization effects, into effective potential energy surfaces. When combined with Ehrenfest dynamics and surface hopping, it effectively captures both nonadiabaticity and quantum nuclear delocalization effects. We apply these new approaches to a one-dimensional proton-coupled electron transfer model and find that they outperform conventional Ehrenfest dynamics and surface hopping, particularly in accurately predicting proton transfer dynamics and proton transmission probabilities in the low-momentum regime.","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":"21 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry Letters","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpclett.5c01020","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Incorporating nuclear quantum effects into nonadiabatic dynamics remains a significant challenge. Herein we introduce new nonadiabatic dynamics approaches based on the recently developed constrained nuclear-electronic orbital (CNEO) theory. The CNEO approach integrates nuclear quantum effects, particularly quantum nuclear delocalization effects, into effective potential energy surfaces. When combined with Ehrenfest dynamics and surface hopping, it effectively captures both nonadiabaticity and quantum nuclear delocalization effects. We apply these new approaches to a one-dimensional proton-coupled electron transfer model and find that they outperform conventional Ehrenfest dynamics and surface hopping, particularly in accurately predicting proton transfer dynamics and proton transmission probabilities in the low-momentum regime.
期刊介绍:
The Journal of Physical Chemistry (JPC) Letters is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, chemical physicists, physicists, material scientists, and engineers. An important criterion for acceptance is that the paper reports a significant scientific advance and/or physical insight such that rapid publication is essential. Two issues of JPC Letters are published each month.