Shuhan Li, Yuxin Jiang, Jingjing Wang, Mark Bartlam, Yingying Wang
{"title":"Chiral naproxen enhances horizontal transfer of antibiotic resistance genes in biofilms: Molecular docking reveals stereoselective mechanisms","authors":"Shuhan Li, Yuxin Jiang, Jingjing Wang, Mark Bartlam, Yingying Wang","doi":"10.1016/j.jhazmat.2025.138980","DOIUrl":null,"url":null,"abstract":"The dissemination of antibiotic resistance genes (ARGs) is a growing global health concern. This study investigates how the chiral enantiomers of the non-antibiotic drug naproxen (NAP) influence ARG dissemination in biofilms. Metagenomic sequencing and binning analyses revealed that NAP enantiomers selectively enriched ARGs and their bacterial hosts, enhancing resistance to specific antibiotics. Notably, the stereoselective effects of NAP enantiomers not only shaped microbial community composition but also affected the potential for ARG spread. Mechanistically, exposure to R-NAP, in comparison to S-NAP, resulted in a 1.53-fold increase in reactive oxygen species (ROS) production, an 18.20% enhancement in cell membrane permeability, and a 1.93-fold rise in the abundance of genes associated with the type IV secretion system (T4SS). These physiological and genetic changes promoted microbial aggregation and DNA conjugation, particularly enhancing the transfer of the <em>sul1</em> gene within the <em>Aquabacter</em> genus through the coordinated action of T4SS, two-component systems (TCS), and quorum sensing (QS). Molecular docking and qRT-PCR analyses further revealed that the stereoselectivity of NAP enantiomers stemmed from their distinct binding interactions with proteins involved in horizontal gene transfer, shedding light on the molecular mechanisms underlying ARG dissemination under chiral NAP exposure.","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":"38 1","pages":""},"PeriodicalIF":11.3000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hazardous Materials","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jhazmat.2025.138980","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
The dissemination of antibiotic resistance genes (ARGs) is a growing global health concern. This study investigates how the chiral enantiomers of the non-antibiotic drug naproxen (NAP) influence ARG dissemination in biofilms. Metagenomic sequencing and binning analyses revealed that NAP enantiomers selectively enriched ARGs and their bacterial hosts, enhancing resistance to specific antibiotics. Notably, the stereoselective effects of NAP enantiomers not only shaped microbial community composition but also affected the potential for ARG spread. Mechanistically, exposure to R-NAP, in comparison to S-NAP, resulted in a 1.53-fold increase in reactive oxygen species (ROS) production, an 18.20% enhancement in cell membrane permeability, and a 1.93-fold rise in the abundance of genes associated with the type IV secretion system (T4SS). These physiological and genetic changes promoted microbial aggregation and DNA conjugation, particularly enhancing the transfer of the sul1 gene within the Aquabacter genus through the coordinated action of T4SS, two-component systems (TCS), and quorum sensing (QS). Molecular docking and qRT-PCR analyses further revealed that the stereoselectivity of NAP enantiomers stemmed from their distinct binding interactions with proteins involved in horizontal gene transfer, shedding light on the molecular mechanisms underlying ARG dissemination under chiral NAP exposure.
期刊介绍:
The Journal of Hazardous Materials serves as a global platform for promoting cutting-edge research in the field of Environmental Science and Engineering. Our publication features a wide range of articles, including full-length research papers, review articles, and perspectives, with the aim of enhancing our understanding of the dangers and risks associated with various materials concerning public health and the environment. It is important to note that the term "environmental contaminants" refers specifically to substances that pose hazardous effects through contamination, while excluding those that do not have such impacts on the environment or human health. Moreover, we emphasize the distinction between wastes and hazardous materials in order to provide further clarity on the scope of the journal. We have a keen interest in exploring specific compounds and microbial agents that have adverse effects on the environment.