Revealing the nature of surface charging during X-ray photoelectron spectroscopy analysis of thin film insulators with metal capping layers

IF 6.3 2区 材料科学 Q2 CHEMISTRY, PHYSICAL
Grzegorz Greczynski
{"title":"Revealing the nature of surface charging during X-ray photoelectron spectroscopy analysis of thin film insulators with metal capping layers","authors":"Grzegorz Greczynski","doi":"10.1016/j.apsusc.2025.163853","DOIUrl":null,"url":null,"abstract":"X-ray photoelectron spectroscopy (XPS) analysis of chemical bonding in electrically insulating samples is seriously complicated by sample charging. Recently, capping an insulator with a few nm thick metallic layer with low affinity to oxygen was shown to eliminate charging in several common insulators. Here, results of the follow-up study aiming at a better understanding of the mechanisms behind this effect are reported. SiO<sub>2</sub> films, used as model insulators, are grown by magnetron sputtering with the thickness <span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;msub is=\"true\"&gt;&lt;mi is=\"true\"&gt;d&lt;/mi&gt;&lt;msub is=\"true\"&gt;&lt;mrow is=\"true\"&gt;&lt;mi mathvariant=\"italic\" is=\"true\"&gt;SiO&lt;/mi&gt;&lt;/mrow&gt;&lt;mn is=\"true\"&gt;2&lt;/mn&gt;&lt;/msub&gt;&lt;/msub&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.548ex\" role=\"img\" style=\"vertical-align: -0.812ex;\" viewbox=\"0 -747.2 2159.5 1096.9\" width=\"5.016ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-64\"></use></g><g is=\"true\" transform=\"translate(520,-155)\"><g is=\"true\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMATHI-53\"></use><use transform=\"scale(0.707)\" x=\"613\" xlink:href=\"#MJMATHI-69\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"959\" xlink:href=\"#MJMATHI-4F\" y=\"0\"></use></g></g><g is=\"true\" transform=\"translate(1217,-107)\"><use transform=\"scale(0.5)\" xlink:href=\"#MJMAIN-32\"></use></g></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub is=\"true\"><mi is=\"true\">d</mi><msub is=\"true\"><mrow is=\"true\"><mi is=\"true\" mathvariant=\"italic\">SiO</mi></mrow><mn is=\"true\">2</mn></msub></msub></math></span></span><script type=\"math/mml\"><math><msub is=\"true\"><mi is=\"true\">d</mi><msub is=\"true\"><mrow is=\"true\"><mi mathvariant=\"italic\" is=\"true\">SiO</mi></mrow><mn is=\"true\">2</mn></msub></msub></math></script></span> in the range 30–3000 nm to study phenomena operating on different length scales. Metal caps, with different photoelectron yields (W and Al), are applied either as a global layer grounded on top with Cu clips or as dots with 1- or 5-mm diameter connecting to the ground only through the silica film. Charging elimination irrespective of <span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;msub is=\"true\"&gt;&lt;mi is=\"true\"&gt;d&lt;/mi&gt;&lt;msub is=\"true\"&gt;&lt;mrow is=\"true\"&gt;&lt;mi mathvariant=\"italic\" is=\"true\"&gt;SiO&lt;/mi&gt;&lt;/mrow&gt;&lt;mn is=\"true\"&gt;2&lt;/mn&gt;&lt;/msub&gt;&lt;/msub&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.548ex\" role=\"img\" style=\"vertical-align: -0.812ex;\" viewbox=\"0 -747.2 2159.5 1096.9\" width=\"5.016ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-64\"></use></g><g is=\"true\" transform=\"translate(520,-155)\"><g is=\"true\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMATHI-53\"></use><use transform=\"scale(0.707)\" x=\"613\" xlink:href=\"#MJMATHI-69\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"959\" xlink:href=\"#MJMATHI-4F\" y=\"0\"></use></g></g><g is=\"true\" transform=\"translate(1217,-107)\"><use transform=\"scale(0.5)\" xlink:href=\"#MJMAIN-32\"></use></g></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub is=\"true\"><mi is=\"true\">d</mi><msub is=\"true\"><mrow is=\"true\"><mi is=\"true\" mathvariant=\"italic\">SiO</mi></mrow><mn is=\"true\">2</mn></msub></msub></math></span></span><script type=\"math/mml\"><math><msub is=\"true\"><mi is=\"true\">d</mi><msub is=\"true\"><mrow is=\"true\"><mi mathvariant=\"italic\" is=\"true\">SiO</mi></mrow><mn is=\"true\">2</mn></msub></msub></math></script></span> takes place in samples with global grounded W caps, and surprisingly also for films capped with 5 mm W dots, provided they are not thicker than 500 nm. Moreover, if the area irradiated by the X-ray beam is larger than that under the metal cap (realized here for samples with 1 mm W dots), charging elimination is observed only for<span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;msub is=\"true\"&gt;&lt;mi is=\"true\"&gt;d&lt;/mi&gt;&lt;msub is=\"true\"&gt;&lt;mrow is=\"true\"&gt;&lt;mi mathvariant=\"italic\" is=\"true\"&gt;SiO&lt;/mi&gt;&lt;/mrow&gt;&lt;mn is=\"true\"&gt;2&lt;/mn&gt;&lt;/msub&gt;&lt;/msub&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.548ex\" role=\"img\" style=\"vertical-align: -0.812ex;\" viewbox=\"0 -747.2 2159.5 1096.9\" width=\"5.016ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-64\"></use></g><g is=\"true\" transform=\"translate(520,-155)\"><g is=\"true\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMATHI-53\"></use><use transform=\"scale(0.707)\" x=\"613\" xlink:href=\"#MJMATHI-69\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"959\" xlink:href=\"#MJMATHI-4F\" y=\"0\"></use></g></g><g is=\"true\" transform=\"translate(1217,-107)\"><use transform=\"scale(0.5)\" xlink:href=\"#MJMAIN-32\"></use></g></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub is=\"true\"><mi is=\"true\">d</mi><msub is=\"true\"><mrow is=\"true\"><mi is=\"true\" mathvariant=\"italic\">SiO</mi></mrow><mn is=\"true\">2</mn></msub></msub></math></span></span><script type=\"math/mml\"><math><msub is=\"true\"><mi is=\"true\">d</mi><msub is=\"true\"><mrow is=\"true\"><mi mathvariant=\"italic\" is=\"true\">SiO</mi></mrow><mn is=\"true\">2</mn></msub></msub></math></script></span> = 30 nm. Material properties that control the effect include the metal photoelectric yield (with respect to that of an insulator), X-ray-induced conductivity, secondary electron (SE) yield, SE inelastic mean free paths, and X-ray attenuation lengths. Experimental variables such as the size of the irradiated area with respect to that of the metal cap and the type of grounding connection are also crucial. Although the study is based on thin films the conclusions give insights into critical factors that govern charging phenomena in any other type of insulating samples.","PeriodicalId":247,"journal":{"name":"Applied Surface Science","volume":"100 1","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Surface Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.apsusc.2025.163853","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

X-ray photoelectron spectroscopy (XPS) analysis of chemical bonding in electrically insulating samples is seriously complicated by sample charging. Recently, capping an insulator with a few nm thick metallic layer with low affinity to oxygen was shown to eliminate charging in several common insulators. Here, results of the follow-up study aiming at a better understanding of the mechanisms behind this effect are reported. SiO2 films, used as model insulators, are grown by magnetron sputtering with the thickness dSiO2 in the range 30–3000 nm to study phenomena operating on different length scales. Metal caps, with different photoelectron yields (W and Al), are applied either as a global layer grounded on top with Cu clips or as dots with 1- or 5-mm diameter connecting to the ground only through the silica film. Charging elimination irrespective of dSiO2 takes place in samples with global grounded W caps, and surprisingly also for films capped with 5 mm W dots, provided they are not thicker than 500 nm. Moreover, if the area irradiated by the X-ray beam is larger than that under the metal cap (realized here for samples with 1 mm W dots), charging elimination is observed only fordSiO2 = 30 nm. Material properties that control the effect include the metal photoelectric yield (with respect to that of an insulator), X-ray-induced conductivity, secondary electron (SE) yield, SE inelastic mean free paths, and X-ray attenuation lengths. Experimental variables such as the size of the irradiated area with respect to that of the metal cap and the type of grounding connection are also crucial. Although the study is based on thin films the conclusions give insights into critical factors that govern charging phenomena in any other type of insulating samples.

Abstract Image

利用x射线光电子能谱分析揭示金属盖层薄膜绝缘体的表面充电性质
电绝缘样品中化学键的x射线光电子能谱(XPS)分析由于样品带电而变得非常复杂。最近,在绝缘体上覆盖几纳米厚的对氧亲和力低的金属层被证明可以消除几种常见绝缘体中的电荷。本文报道了旨在更好地理解这一效应背后机制的后续研究结果。采用磁控溅射法制备了厚度为dSiO2dSiO2 30 ~ 3000 nm的SiO2薄膜作为模型绝缘体,研究了不同长度尺度下的现象。具有不同光电子产率(W和Al)的金属帽,要么作为一个全局层,在其上用铜夹接地,要么作为直径为1或5毫米的点,仅通过硅膜与地面连接。无论dSiO2dSiO2如何,电荷消除都发生在具有全局接地W帽的样品中,并且令人惊讶的是,对于具有5 mm W点的薄膜,只要它们的厚度不超过500 nm。此外,如果x射线束照射的面积大于金属帽下的面积(这里实现了1 mm W点的样品),则仅在sio2dsio2 = 30 nm处观察到电荷消除。控制该效应的材料特性包括金属光电产率(相对于绝缘体的产率)、x射线诱导电导率、二次电子(SE)产率、SE非弹性平均自由程和x射线衰减长度。实验变量,例如相对于金属帽的辐照面积的大小和接地连接的类型也至关重要。虽然这项研究是基于薄膜的,但结论对控制任何其他类型绝缘样品中充电现象的关键因素有了深入的了解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Surface Science
Applied Surface Science 工程技术-材料科学:膜
CiteScore
12.50
自引率
7.50%
发文量
3393
审稿时长
67 days
期刊介绍: Applied Surface Science covers topics contributing to a better understanding of surfaces, interfaces, nanostructures and their applications. The journal is concerned with scientific research on the atomic and molecular level of material properties determined with specific surface analytical techniques and/or computational methods, as well as the processing of such structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信