{"title":"Revealing the nature of surface charging during X-ray photoelectron spectroscopy analysis of thin film insulators with metal capping layers","authors":"Grzegorz Greczynski","doi":"10.1016/j.apsusc.2025.163853","DOIUrl":null,"url":null,"abstract":"X-ray photoelectron spectroscopy (XPS) analysis of chemical bonding in electrically insulating samples is seriously complicated by sample charging. Recently, capping an insulator with a few nm thick metallic layer with low affinity to oxygen was shown to eliminate charging in several common insulators. Here, results of the follow-up study aiming at a better understanding of the mechanisms behind this effect are reported. SiO<sub>2</sub> films, used as model insulators, are grown by magnetron sputtering with the thickness <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub is=\"true\"><mi is=\"true\">d</mi><msub is=\"true\"><mrow is=\"true\"><mi mathvariant=\"italic\" is=\"true\">SiO</mi></mrow><mn is=\"true\">2</mn></msub></msub></math>' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.548ex\" role=\"img\" style=\"vertical-align: -0.812ex;\" viewbox=\"0 -747.2 2159.5 1096.9\" width=\"5.016ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-64\"></use></g><g is=\"true\" transform=\"translate(520,-155)\"><g is=\"true\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMATHI-53\"></use><use transform=\"scale(0.707)\" x=\"613\" xlink:href=\"#MJMATHI-69\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"959\" xlink:href=\"#MJMATHI-4F\" y=\"0\"></use></g></g><g is=\"true\" transform=\"translate(1217,-107)\"><use transform=\"scale(0.5)\" xlink:href=\"#MJMAIN-32\"></use></g></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub is=\"true\"><mi is=\"true\">d</mi><msub is=\"true\"><mrow is=\"true\"><mi is=\"true\" mathvariant=\"italic\">SiO</mi></mrow><mn is=\"true\">2</mn></msub></msub></math></span></span><script type=\"math/mml\"><math><msub is=\"true\"><mi is=\"true\">d</mi><msub is=\"true\"><mrow is=\"true\"><mi mathvariant=\"italic\" is=\"true\">SiO</mi></mrow><mn is=\"true\">2</mn></msub></msub></math></script></span> in the range 30–3000 nm to study phenomena operating on different length scales. Metal caps, with different photoelectron yields (W and Al), are applied either as a global layer grounded on top with Cu clips or as dots with 1- or 5-mm diameter connecting to the ground only through the silica film. Charging elimination irrespective of <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub is=\"true\"><mi is=\"true\">d</mi><msub is=\"true\"><mrow is=\"true\"><mi mathvariant=\"italic\" is=\"true\">SiO</mi></mrow><mn is=\"true\">2</mn></msub></msub></math>' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.548ex\" role=\"img\" style=\"vertical-align: -0.812ex;\" viewbox=\"0 -747.2 2159.5 1096.9\" width=\"5.016ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-64\"></use></g><g is=\"true\" transform=\"translate(520,-155)\"><g is=\"true\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMATHI-53\"></use><use transform=\"scale(0.707)\" x=\"613\" xlink:href=\"#MJMATHI-69\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"959\" xlink:href=\"#MJMATHI-4F\" y=\"0\"></use></g></g><g is=\"true\" transform=\"translate(1217,-107)\"><use transform=\"scale(0.5)\" xlink:href=\"#MJMAIN-32\"></use></g></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub is=\"true\"><mi is=\"true\">d</mi><msub is=\"true\"><mrow is=\"true\"><mi is=\"true\" mathvariant=\"italic\">SiO</mi></mrow><mn is=\"true\">2</mn></msub></msub></math></span></span><script type=\"math/mml\"><math><msub is=\"true\"><mi is=\"true\">d</mi><msub is=\"true\"><mrow is=\"true\"><mi mathvariant=\"italic\" is=\"true\">SiO</mi></mrow><mn is=\"true\">2</mn></msub></msub></math></script></span> takes place in samples with global grounded W caps, and surprisingly also for films capped with 5 mm W dots, provided they are not thicker than 500 nm. Moreover, if the area irradiated by the X-ray beam is larger than that under the metal cap (realized here for samples with 1 mm W dots), charging elimination is observed only for<span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub is=\"true\"><mi is=\"true\">d</mi><msub is=\"true\"><mrow is=\"true\"><mi mathvariant=\"italic\" is=\"true\">SiO</mi></mrow><mn is=\"true\">2</mn></msub></msub></math>' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.548ex\" role=\"img\" style=\"vertical-align: -0.812ex;\" viewbox=\"0 -747.2 2159.5 1096.9\" width=\"5.016ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-64\"></use></g><g is=\"true\" transform=\"translate(520,-155)\"><g is=\"true\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMATHI-53\"></use><use transform=\"scale(0.707)\" x=\"613\" xlink:href=\"#MJMATHI-69\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"959\" xlink:href=\"#MJMATHI-4F\" y=\"0\"></use></g></g><g is=\"true\" transform=\"translate(1217,-107)\"><use transform=\"scale(0.5)\" xlink:href=\"#MJMAIN-32\"></use></g></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub is=\"true\"><mi is=\"true\">d</mi><msub is=\"true\"><mrow is=\"true\"><mi is=\"true\" mathvariant=\"italic\">SiO</mi></mrow><mn is=\"true\">2</mn></msub></msub></math></span></span><script type=\"math/mml\"><math><msub is=\"true\"><mi is=\"true\">d</mi><msub is=\"true\"><mrow is=\"true\"><mi mathvariant=\"italic\" is=\"true\">SiO</mi></mrow><mn is=\"true\">2</mn></msub></msub></math></script></span> = 30 nm. Material properties that control the effect include the metal photoelectric yield (with respect to that of an insulator), X-ray-induced conductivity, secondary electron (SE) yield, SE inelastic mean free paths, and X-ray attenuation lengths. Experimental variables such as the size of the irradiated area with respect to that of the metal cap and the type of grounding connection are also crucial. Although the study is based on thin films the conclusions give insights into critical factors that govern charging phenomena in any other type of insulating samples.","PeriodicalId":247,"journal":{"name":"Applied Surface Science","volume":"100 1","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Surface Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.apsusc.2025.163853","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
X-ray photoelectron spectroscopy (XPS) analysis of chemical bonding in electrically insulating samples is seriously complicated by sample charging. Recently, capping an insulator with a few nm thick metallic layer with low affinity to oxygen was shown to eliminate charging in several common insulators. Here, results of the follow-up study aiming at a better understanding of the mechanisms behind this effect are reported. SiO2 films, used as model insulators, are grown by magnetron sputtering with the thickness in the range 30–3000 nm to study phenomena operating on different length scales. Metal caps, with different photoelectron yields (W and Al), are applied either as a global layer grounded on top with Cu clips or as dots with 1- or 5-mm diameter connecting to the ground only through the silica film. Charging elimination irrespective of takes place in samples with global grounded W caps, and surprisingly also for films capped with 5 mm W dots, provided they are not thicker than 500 nm. Moreover, if the area irradiated by the X-ray beam is larger than that under the metal cap (realized here for samples with 1 mm W dots), charging elimination is observed only for = 30 nm. Material properties that control the effect include the metal photoelectric yield (with respect to that of an insulator), X-ray-induced conductivity, secondary electron (SE) yield, SE inelastic mean free paths, and X-ray attenuation lengths. Experimental variables such as the size of the irradiated area with respect to that of the metal cap and the type of grounding connection are also crucial. Although the study is based on thin films the conclusions give insights into critical factors that govern charging phenomena in any other type of insulating samples.
期刊介绍:
Applied Surface Science covers topics contributing to a better understanding of surfaces, interfaces, nanostructures and their applications. The journal is concerned with scientific research on the atomic and molecular level of material properties determined with specific surface analytical techniques and/or computational methods, as well as the processing of such structures.