Heterostructure and carbon modification regulate FeF3/molten salt electrolyte interface in high-specific-energy thermal batteries

IF 5.5 3区 材料科学 Q1 ELECTROCHEMISTRY
Zhenlong Liang, Chuanyu Jin, Yaning Chang, Xianghua Zhang, Yujing Zhu, Yongxu Du
{"title":"Heterostructure and carbon modification regulate FeF3/molten salt electrolyte interface in high-specific-energy thermal batteries","authors":"Zhenlong Liang,&nbsp;Chuanyu Jin,&nbsp;Yaning Chang,&nbsp;Xianghua Zhang,&nbsp;Yujing Zhu,&nbsp;Yongxu Du","doi":"10.1016/j.electacta.2025.146732","DOIUrl":null,"url":null,"abstract":"<div><div>FeF<sub>3</sub> is an ideal cathode material for high-specific-energy thermal batteries, but its low conductivity and severe dissolution reactions with molten salt causes active material loss, interfacial passivation, and increased resistance, degrading discharge performance. To address these challenges, this study proposes the in situ construction of FeF<sub>2</sub> on the FeF<sub>3</sub> surface to form the FeF<sub>3</sub>/FeF<sub>2</sub> heterostructure, enhancing the conductivity and mitigating dissolution. And the conductive rGO and CNTs are introduced to further improve conductivity, regulate interfacial behavior, and suppress dissolution reactions, and reduce active material loss and passivation layer formation, thereby enhancing discharge performance. The FeF<sub>3</sub>/FeF<sub>2</sub>@CNTs cathodes achieve high specific capacity with 343.44 mAh g⁻<sup>1</sup> at 0.1 A cm⁻<sup>2</sup> and 566.68 mAh g⁻<sup>1</sup> at 0.05 A cm⁻<sup>2</sup>, outperforming FeF<sub>3</sub>/FeF<sub>2</sub>@rGO cathodes with stronger suppression of dissolution by 27.5 % and 48.3 %, respectively. Pulse resistance testing and interfacial analysis reveal that rGO coating reduces cathode/electrolyte interfacial wettability, causing interface separation, increased resistance, and voltage decline. Thus, this study highlights the importance of not only improving conductivity but also regulating interfacial wettability, dissolution, and charge transfer coupling to enhance discharge performance of thermal batteries, offering a novel design strategy for high-specific-energy thermal batteries.</div></div>","PeriodicalId":305,"journal":{"name":"Electrochimica Acta","volume":"536 ","pages":"Article 146732"},"PeriodicalIF":5.5000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochimica Acta","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S001346862501093X","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

FeF3 is an ideal cathode material for high-specific-energy thermal batteries, but its low conductivity and severe dissolution reactions with molten salt causes active material loss, interfacial passivation, and increased resistance, degrading discharge performance. To address these challenges, this study proposes the in situ construction of FeF2 on the FeF3 surface to form the FeF3/FeF2 heterostructure, enhancing the conductivity and mitigating dissolution. And the conductive rGO and CNTs are introduced to further improve conductivity, regulate interfacial behavior, and suppress dissolution reactions, and reduce active material loss and passivation layer formation, thereby enhancing discharge performance. The FeF3/FeF2@CNTs cathodes achieve high specific capacity with 343.44 mAh g⁻1 at 0.1 A cm⁻2 and 566.68 mAh g⁻1 at 0.05 A cm⁻2, outperforming FeF3/FeF2@rGO cathodes with stronger suppression of dissolution by 27.5 % and 48.3 %, respectively. Pulse resistance testing and interfacial analysis reveal that rGO coating reduces cathode/electrolyte interfacial wettability, causing interface separation, increased resistance, and voltage decline. Thus, this study highlights the importance of not only improving conductivity but also regulating interfacial wettability, dissolution, and charge transfer coupling to enhance discharge performance of thermal batteries, offering a novel design strategy for high-specific-energy thermal batteries.

Abstract Image

异质结构和碳改性对高比能热电池中FeF3/熔盐电解质界面的影响
FeF3是高比能热电池理想的正极材料,但其电导率低,与熔盐发生剧烈溶解反应,导致活性物质损失,界面钝化,电阻增大,降低了放电性能。为了解决这些挑战,本研究提出在FeF3表面原位构建FeF2,形成FeF3/FeF2异质结构,提高电导率并减轻溶解。通过引入导电还原氧化石墨烯和碳纳米管,进一步提高导电性能,调节界面行为,抑制溶解反应,减少活性物质的损失和钝化层的形成,从而提高放电性能。FeF3/FeF2@CNTs阴极在0.1 A cm⁻2和0.05 A cm⁻2时的比容量分别为343.44 mAh g⁻1和566.68 mAh g⁻1,比FeF3/FeF2@rGO阴极的抑制溶解能力分别强27.5%和48.3%。脉冲电阻测试和界面分析表明,氧化石墨烯涂层降低了阴极/电解质界面的润湿性,导致界面分离、电阻增加和电压下降。因此,本研究强调了提高热电池的导电性、调节界面润湿性、溶解性和电荷转移耦合对提高热电池放电性能的重要性,为高比能热电池的设计提供了一种新的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Electrochimica Acta
Electrochimica Acta 工程技术-电化学
CiteScore
11.30
自引率
6.10%
发文量
1634
审稿时长
41 days
期刊介绍: Electrochimica Acta is an international journal. It is intended for the publication of both original work and reviews in the field of electrochemistry. Electrochemistry should be interpreted to mean any of the research fields covered by the Divisions of the International Society of Electrochemistry listed below, as well as emerging scientific domains covered by ISE New Topics Committee.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信