Wenjun Fan , Hester Liu , Gregory C. Stachelek , Asma Begum , Catherine E. Davis , Tony E. Dorado , Glen Ernst , William C. Reinhold , Busra Ozbek , Qizhi Zheng , Angelo M. De Marzo , N.V. Rajeshkumar , James C. Barrow , Marikki Laiho
{"title":"Ribosomal RNA transcription regulates splicing through ribosomal protein RPL22","authors":"Wenjun Fan , Hester Liu , Gregory C. Stachelek , Asma Begum , Catherine E. Davis , Tony E. Dorado , Glen Ernst , William C. Reinhold , Busra Ozbek , Qizhi Zheng , Angelo M. De Marzo , N.V. Rajeshkumar , James C. Barrow , Marikki Laiho","doi":"10.1016/j.chembiol.2025.05.012","DOIUrl":null,"url":null,"abstract":"<div><div>Ribosome biosynthesis is a cancer vulnerability targeted by inhibiting RNA polymerase I (Pol I) transcription. We developed specific Pol I inhibitors that activate a ribotoxic stress pathway to uncover drivers of sensitivity. Integrating multi-omics and drug response data from a large cancer cell panel, we found that RPL22 frameshift mutations confer Pol I inhibitor sensitivity. Mechanistically, RPL22 interacts directly with 28S rRNA and mRNA splice junctions, acting as a splicing regulator. RPL22 deficiency, intensified by 28S rRNA sequestration, promotes splicing of its paralog RPL22L1 and the p53 negative regulator MDM4. Both chemical and genetic inhibition of rRNA synthesis broadly remodel mRNA splicing controlling hundreds of targets. Notably, RPL22-dependent alternative splicing is reversed by Pol I inhibition, revealing a non-canonical ribotoxic stress-initiated tumor suppressive pathway. This study uncovers a robust mechanism linking rRNA synthesis activity to splicing, coordinated by the ribosomal protein RPL22.</div></div>","PeriodicalId":265,"journal":{"name":"Cell Chemical Biology","volume":"32 7","pages":"Pages 908-925.e9"},"PeriodicalIF":6.6000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Chemical Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2451945625001734","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Ribosome biosynthesis is a cancer vulnerability targeted by inhibiting RNA polymerase I (Pol I) transcription. We developed specific Pol I inhibitors that activate a ribotoxic stress pathway to uncover drivers of sensitivity. Integrating multi-omics and drug response data from a large cancer cell panel, we found that RPL22 frameshift mutations confer Pol I inhibitor sensitivity. Mechanistically, RPL22 interacts directly with 28S rRNA and mRNA splice junctions, acting as a splicing regulator. RPL22 deficiency, intensified by 28S rRNA sequestration, promotes splicing of its paralog RPL22L1 and the p53 negative regulator MDM4. Both chemical and genetic inhibition of rRNA synthesis broadly remodel mRNA splicing controlling hundreds of targets. Notably, RPL22-dependent alternative splicing is reversed by Pol I inhibition, revealing a non-canonical ribotoxic stress-initiated tumor suppressive pathway. This study uncovers a robust mechanism linking rRNA synthesis activity to splicing, coordinated by the ribosomal protein RPL22.
Cell Chemical BiologyBiochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
14.70
自引率
2.30%
发文量
143
期刊介绍:
Cell Chemical Biology, a Cell Press journal established in 1994 as Chemistry & Biology, focuses on publishing crucial advances in chemical biology research with broad appeal to our diverse community, spanning basic scientists to clinicians. Pioneering investigations at the chemistry-biology interface, the journal fosters collaboration between these disciplines. We encourage submissions providing significant conceptual advancements of broad interest across chemical, biological, clinical, and related fields. Particularly sought are articles utilizing chemical tools to perturb, visualize, and measure biological systems, offering unique insights into molecular mechanisms, disease biology, and therapeutics.