Ultralong-cycling Lithium Storage of SrGe2O4S Anode Enabled by in situ Formed Oxysulfide Matrix.

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Chenlong Dong,Ruiqi Wang,Yuanxia Zhang,Qiang Fu,Siwei Zhao,Guobao Li,Zhiyong Mao,Fuqiang Huang
{"title":"Ultralong-cycling Lithium Storage of SrGe2O4S Anode Enabled by in situ Formed Oxysulfide Matrix.","authors":"Chenlong Dong,Ruiqi Wang,Yuanxia Zhang,Qiang Fu,Siwei Zhao,Guobao Li,Zhiyong Mao,Fuqiang Huang","doi":"10.1002/anie.202508673","DOIUrl":null,"url":null,"abstract":"High-energy lithium-ion batteries demand next-generation alloying-type anodes with high capacity and low voltage. While silicon-based anodes are in industrial use, commercial alloying-type anodes still suffer from excessive volume expansion and inadequate cycle life. Even incorporating silicon-carbon composites within graphite (typically <20% in commercial products) fails to resolve these limitations. Herein, we report a novel SrGe2O4S anode for ultralong-cycling lithium storage. An oxysulfide matrix (Li₂O/SrS) was in situ formed around Ge nanodomains. Enabled by the strong covalency of soft S2⁻ anions and the pinning effect of large Sr2⁺ ions, this synergistic matrix has demonstrated capabilities to enhance interfacial compatibility with Ge, facilitate efficient Li⁺ transport, suppress agglomeration of Ge nanoparticles and buffer volume expansion, as evidenced by in/ex situ characterizations, density functional theory calculations, and finite element analysis simulations. The anode harvests a low charging medium voltage of 0.42 V and reversible capacity of 587 mA h g-1 at 0.1 A g-1 after 800 cycles (8300 h) with 93.2% capacity retention. The LiCoO2||SrGe2O4S full cell delivers a high capacity of 142 mA h g-1 and energy density of 482 Wh kg-1. This work sheds light on constructing functional matrix to relieve volume expansion and particle agglomeration of high-capacity ultralong-cycling alloying-type anodes.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"23 1","pages":"e202508673"},"PeriodicalIF":16.1000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202508673","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

High-energy lithium-ion batteries demand next-generation alloying-type anodes with high capacity and low voltage. While silicon-based anodes are in industrial use, commercial alloying-type anodes still suffer from excessive volume expansion and inadequate cycle life. Even incorporating silicon-carbon composites within graphite (typically <20% in commercial products) fails to resolve these limitations. Herein, we report a novel SrGe2O4S anode for ultralong-cycling lithium storage. An oxysulfide matrix (Li₂O/SrS) was in situ formed around Ge nanodomains. Enabled by the strong covalency of soft S2⁻ anions and the pinning effect of large Sr2⁺ ions, this synergistic matrix has demonstrated capabilities to enhance interfacial compatibility with Ge, facilitate efficient Li⁺ transport, suppress agglomeration of Ge nanoparticles and buffer volume expansion, as evidenced by in/ex situ characterizations, density functional theory calculations, and finite element analysis simulations. The anode harvests a low charging medium voltage of 0.42 V and reversible capacity of 587 mA h g-1 at 0.1 A g-1 after 800 cycles (8300 h) with 93.2% capacity retention. The LiCoO2||SrGe2O4S full cell delivers a high capacity of 142 mA h g-1 and energy density of 482 Wh kg-1. This work sheds light on constructing functional matrix to relieve volume expansion and particle agglomeration of high-capacity ultralong-cycling alloying-type anodes.
原位形成的氧化硫化物基体实现SrGe2O4S阳极的超长循环锂存储。
高能锂离子电池需要具有高容量和低电压的下一代合金型阳极。虽然硅基阳极在工业上得到了应用,但商用合金型阳极仍然存在体积膨胀过大和循环寿命不足的问题。即使在石墨中加入硅碳复合材料(通常在商业产品中<20%)也无法解决这些限制。在此,我们报道了一种用于超长循环锂存储的新型SrGe2O4S阳极。氧化硫化物基质(Li₂O/SrS)在Ge纳米畴周围原位形成。由于软S2⁻+的强共价和大Sr2⁺的钉住效应,这种协同基质已经被证明能够增强与Ge的界面相容性,促进Li⁺高效的传输,抑制Ge纳米颗粒的团聚和缓冲体积膨胀,这一点得到了原位/非原位表征、密度泛函数理论计算和有限元分析模拟的证明。经过800次循环(8300小时)后,阳极获得0.42 V的低充电中压和587 mA h g-1的可逆容量,容量保持率为93.2%。LiCoO2 b| SrGe2O4S电池具有142 mA h g-1的高容量和482 Wh kg-1的能量密度。本研究为构建功能矩阵来缓解高容量超长循环合金型阳极的体积膨胀和颗粒团聚提供了思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信