{"title":"Old player, new roles: defining the role of the plastidial phosphorylase.","authors":"David Seung,Slawomir Orzechowski,Joerg Fettke","doi":"10.1111/nph.70308","DOIUrl":null,"url":null,"abstract":"The plastidial phosphorylase (Pho1 or Phs1; E.C. 2.4.1.1) is a ubiquitous enzyme among plants that catalyzes the formation and degradation of glucans. Although the first report connecting Pho1 with starch metabolism came out > 80 years ago, its precise role is still a matter of debate. In this article, we evaluate the catalytic and regulatory mechanisms of Pho1 in the context of known mechanisms in its animal, fungal, and bacteria homologs. We further discuss recent breakthroughs in understanding Pho1's function in initiating starch granule formation. This role is relevant to both photosynthetic and nonphotosynthetic tissues, as loss of Pho1 affects the regulation of the number of transitory starch granules in Arabidopsis leaves under various metabolic contexts, as well as the number of storage starch granules and/or starch granule morphology in wheat endosperm and potato tubers. Our comparison of phosphorylases across kingdoms reveals several regulatory mechanisms that require further investigation in plants. We also discuss emerging research on Pho1 protein interactions that give rise to other metabolic processes, such as photosynthesis. Overall, these multiple emerging roles of phosphorylase emphasize its importance in plant metabolism and its broad potential as a target for crop improvement.","PeriodicalId":214,"journal":{"name":"New Phytologist","volume":"1 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Phytologist","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/nph.70308","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The plastidial phosphorylase (Pho1 or Phs1; E.C. 2.4.1.1) is a ubiquitous enzyme among plants that catalyzes the formation and degradation of glucans. Although the first report connecting Pho1 with starch metabolism came out > 80 years ago, its precise role is still a matter of debate. In this article, we evaluate the catalytic and regulatory mechanisms of Pho1 in the context of known mechanisms in its animal, fungal, and bacteria homologs. We further discuss recent breakthroughs in understanding Pho1's function in initiating starch granule formation. This role is relevant to both photosynthetic and nonphotosynthetic tissues, as loss of Pho1 affects the regulation of the number of transitory starch granules in Arabidopsis leaves under various metabolic contexts, as well as the number of storage starch granules and/or starch granule morphology in wheat endosperm and potato tubers. Our comparison of phosphorylases across kingdoms reveals several regulatory mechanisms that require further investigation in plants. We also discuss emerging research on Pho1 protein interactions that give rise to other metabolic processes, such as photosynthesis. Overall, these multiple emerging roles of phosphorylase emphasize its importance in plant metabolism and its broad potential as a target for crop improvement.
期刊介绍:
New Phytologist is an international electronic journal published 24 times a year. It is owned by the New Phytologist Foundation, a non-profit-making charitable organization dedicated to promoting plant science. The journal publishes excellent, novel, rigorous, and timely research and scholarship in plant science and its applications. The articles cover topics in five sections: Physiology & Development, Environment, Interaction, Evolution, and Transformative Plant Biotechnology. These sections encompass intracellular processes, global environmental change, and encourage cross-disciplinary approaches. The journal recognizes the use of techniques from molecular and cell biology, functional genomics, modeling, and system-based approaches in plant science. Abstracting and Indexing Information for New Phytologist includes Academic Search, AgBiotech News & Information, Agroforestry Abstracts, Biochemistry & Biophysics Citation Index, Botanical Pesticides, CAB Abstracts®, Environment Index, Global Health, and Plant Breeding Abstracts, and others.