Super-Turing synaptic resistor circuits for intelligent morphing wing.

Atharva Deo, Jungmin Lee, Dawei Gao, Rahul Shenoy, Kevin Pt Haughn, Zixuan Rong, Yong Hei, D Qiao, Tanay Topac, Fu-Kuo Chang, Daniel J Inman, Yong Chen
{"title":"Super-Turing synaptic resistor circuits for intelligent morphing wing.","authors":"Atharva Deo, Jungmin Lee, Dawei Gao, Rahul Shenoy, Kevin Pt Haughn, Zixuan Rong, Yong Hei, D Qiao, Tanay Topac, Fu-Kuo Chang, Daniel J Inman, Yong Chen","doi":"10.1038/s44172-025-00437-y","DOIUrl":null,"url":null,"abstract":"<p><p>Neurobiological circuits in the brain, operating in Super-Turing mode, process information while simultaneously modifying their synaptic connections through learning, allowing them to dynamically adapt to changes. In contrast, artificial intelligence systems based on computers operate in Turing mode and lack the ability to concurrently infer and learn, making them vulnerable to failure under dynamically changing conditions. Here we show a synaptic resistor circuit that operates in Super-Turing mode, enabling concurrent learning and inference. The circuit controls a morphing wing to reduce its drag-to-lift force ratio and recover from stalls in complex aerodynamic environments. The synaptic resistor circuit demonstrates superior performance, faster learning speeds, enhanced adaptability, and reduced power consumption compared to artificial neural networks and human operators on the same task. By overcoming the fundamental limitations of computers, synaptic resistor circuits offer high-speed concurrent learning and inference, ultra-low power consumption, error correction, and agile adaptability for artificial intelligence systems.</p>","PeriodicalId":72644,"journal":{"name":"Communications engineering","volume":"4 1","pages":"109"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12170896/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s44172-025-00437-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Neurobiological circuits in the brain, operating in Super-Turing mode, process information while simultaneously modifying their synaptic connections through learning, allowing them to dynamically adapt to changes. In contrast, artificial intelligence systems based on computers operate in Turing mode and lack the ability to concurrently infer and learn, making them vulnerable to failure under dynamically changing conditions. Here we show a synaptic resistor circuit that operates in Super-Turing mode, enabling concurrent learning and inference. The circuit controls a morphing wing to reduce its drag-to-lift force ratio and recover from stalls in complex aerodynamic environments. The synaptic resistor circuit demonstrates superior performance, faster learning speeds, enhanced adaptability, and reduced power consumption compared to artificial neural networks and human operators on the same task. By overcoming the fundamental limitations of computers, synaptic resistor circuits offer high-speed concurrent learning and inference, ultra-low power consumption, error correction, and agile adaptability for artificial intelligence systems.

智能变形翼的超图灵突触电阻电路。
大脑中的神经生物学回路以超级图灵模式运行,在处理信息的同时,通过学习修改它们的突触连接,使它们能够动态地适应变化。相比之下,基于计算机的人工智能系统以图灵模式运行,缺乏同时推断和学习的能力,在动态变化的条件下容易出现故障。在这里,我们展示了一个在超级图灵模式下工作的突触电阻电路,使并发学习和推理成为可能。电路控制一个变形的机翼,以减少其阻力升力比,并从失速中恢复在复杂的空气动力学环境。与人工神经网络和人工操作员相比,突触电阻电路在相同任务上表现出卓越的性能、更快的学习速度、增强的适应性和更低的功耗。通过克服计算机的基本限制,突触电阻电路为人工智能系统提供高速并发学习和推理、超低功耗、纠错和敏捷适应性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信