{"title":"Visual Image Reconstruction from Brain Activity via Latent Representation.","authors":"Yukiyasu Kamitani, Misato Tanaka, Ken Shirakawa","doi":"10.1146/annurev-vision-110423-023616","DOIUrl":null,"url":null,"abstract":"<p><p>Visual image reconstruction, the decoding of perceptual content from brain activity into images, has advanced significantly with the integration of deep neural networks (DNNs) and generative models. This review traces the field's evolution from early classification approaches to sophisticated reconstructions that capture detailed, subjective visual experiences, emphasizing the roles of hierarchical latent representations, compositional strategies, and modular architectures. Despite notable progress, challenges remain, such as achieving true zero-shot generalization for unseen images and accurately modeling the complex, subjective aspects of perception. We discuss the need for diverse datasets, refined evaluation metrics aligned with human perceptual judgments, and compositional representations that strengthen model robustness and generalizability. Ethical issues, including privacy, consent, and potential misuse, are underscored as critical considerations for responsible development. Visual image reconstruction offers promising insights into neural coding and enables new psychological measurements of visual experiences, with applications spanning clinical diagnostics and brain-machine interfaces.</p>","PeriodicalId":48658,"journal":{"name":"Annual Review of Vision Science","volume":" ","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Vision Science","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1146/annurev-vision-110423-023616","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Visual image reconstruction, the decoding of perceptual content from brain activity into images, has advanced significantly with the integration of deep neural networks (DNNs) and generative models. This review traces the field's evolution from early classification approaches to sophisticated reconstructions that capture detailed, subjective visual experiences, emphasizing the roles of hierarchical latent representations, compositional strategies, and modular architectures. Despite notable progress, challenges remain, such as achieving true zero-shot generalization for unseen images and accurately modeling the complex, subjective aspects of perception. We discuss the need for diverse datasets, refined evaluation metrics aligned with human perceptual judgments, and compositional representations that strengthen model robustness and generalizability. Ethical issues, including privacy, consent, and potential misuse, are underscored as critical considerations for responsible development. Visual image reconstruction offers promising insights into neural coding and enables new psychological measurements of visual experiences, with applications spanning clinical diagnostics and brain-machine interfaces.
期刊介绍:
The Annual Review of Vision Science reviews progress in the visual sciences, a cross-cutting set of disciplines which intersect psychology, neuroscience, computer science, cell biology and genetics, and clinical medicine. The journal covers a broad range of topics and techniques, including optics, retina, central visual processing, visual perception, eye movements, visual development, vision models, computer vision, and the mechanisms of visual disease, dysfunction, and sight restoration. The study of vision is central to progress in many areas of science, and this new journal will explore and expose the connections that link it to biology, behavior, computation, engineering, and medicine.