{"title":"Advancing darunavir delivery: nanoformulation strategies and innovations in HIV therapy.","authors":"Shreyash R Patil, Anjana Adhyapak, Rahul Koli","doi":"10.1080/10837450.2025.2520624","DOIUrl":null,"url":null,"abstract":"<p><p>Darunavir, a nonpeptidic protease inhibitor, remains a cornerstone of antiretroviral therapy due to its potent activity against wild-type human immunodeficiency virus (HIV). However, its poor aqueous solubility and limited oral bioavailability, characteristic of Biopharmaceutical Classification System Class II drugs, restrict therapeutic efficacy, with an absorption rate of only 37%. To address these pharmacokinetic limitations, nanotechnology-based strategies have been explored to enhance drug solubility, systemic exposure, and targeted tissue distribution. This review critically examines the potential of nanocarrier-based formulations, including solid lipid nanoparticles, supersaturated self-nanoemulsifying drug delivery systems, lipid nanoemulsions, poly(lactic-co-glycolic acid) nanoparticles, and cubosomes, in optimizing darunavir pharmacokinetics. These approaches have demonstrated improved bioavailability, sustained drug release, lymphatic targeting, and enhanced blood-brain barrier penetration, offering promising avenues for optimizing HIV therapy while minimizing systemic toxicity. Further, this review discusses challenges associated with nanoformulation-based antiretroviral strategies, scalability, manufacturing challenges, potential toxicity, immunogenicity, long-term stability issues, and explores emerging innovations, such as multifunctional nanoparticles, targeted delivery platforms, and sustainable nanotechnology-based formulations. By systematically evaluating current advances, this analysis provides critical insights into overcoming bioavailability constraints and facilitating the clinical translation of nanocarrier-based antiretroviral therapies.</p>","PeriodicalId":20004,"journal":{"name":"Pharmaceutical Development and Technology","volume":" ","pages":"1-49"},"PeriodicalIF":2.6000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical Development and Technology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10837450.2025.2520624","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Darunavir, a nonpeptidic protease inhibitor, remains a cornerstone of antiretroviral therapy due to its potent activity against wild-type human immunodeficiency virus (HIV). However, its poor aqueous solubility and limited oral bioavailability, characteristic of Biopharmaceutical Classification System Class II drugs, restrict therapeutic efficacy, with an absorption rate of only 37%. To address these pharmacokinetic limitations, nanotechnology-based strategies have been explored to enhance drug solubility, systemic exposure, and targeted tissue distribution. This review critically examines the potential of nanocarrier-based formulations, including solid lipid nanoparticles, supersaturated self-nanoemulsifying drug delivery systems, lipid nanoemulsions, poly(lactic-co-glycolic acid) nanoparticles, and cubosomes, in optimizing darunavir pharmacokinetics. These approaches have demonstrated improved bioavailability, sustained drug release, lymphatic targeting, and enhanced blood-brain barrier penetration, offering promising avenues for optimizing HIV therapy while minimizing systemic toxicity. Further, this review discusses challenges associated with nanoformulation-based antiretroviral strategies, scalability, manufacturing challenges, potential toxicity, immunogenicity, long-term stability issues, and explores emerging innovations, such as multifunctional nanoparticles, targeted delivery platforms, and sustainable nanotechnology-based formulations. By systematically evaluating current advances, this analysis provides critical insights into overcoming bioavailability constraints and facilitating the clinical translation of nanocarrier-based antiretroviral therapies.
期刊介绍:
Pharmaceutical Development & Technology publishes research on the design, development, manufacture, and evaluation of conventional and novel drug delivery systems, emphasizing practical solutions and applications to theoretical and research-based problems. The journal aims to publish significant, innovative and original research to advance the frontiers of pharmaceutical development and technology.
Through original articles, reviews (where prior discussion with the EIC is encouraged), short reports, book reviews and technical notes, Pharmaceutical Development & Technology covers aspects such as:
-Preformulation and pharmaceutical formulation studies
-Pharmaceutical materials selection and characterization
-Pharmaceutical process development, engineering, scale-up and industrialisation, and process validation
-QbD in the form a risk assessment and DoE driven approaches
-Design of dosage forms and drug delivery systems
-Emerging pharmaceutical formulation and drug delivery technologies with a focus on personalised therapies
-Drug delivery systems research and quality improvement
-Pharmaceutical regulatory affairs
This journal will not consider for publication manuscripts focusing purely on clinical evaluations, botanicals, or animal models.