M Nazmul Huda, Emer Kelly, Keri Barron, Jing Xue, William Valdar, Lisa M Tarantino, Sarah Schoenrock, Folami Y Ideraabdullah, Brian J Bennett
{"title":"The impact of early-life exposures on growth and adult gut microbiome composition is dependent on genetic strain and parent- of- origin.","authors":"M Nazmul Huda, Emer Kelly, Keri Barron, Jing Xue, William Valdar, Lisa M Tarantino, Sarah Schoenrock, Folami Y Ideraabdullah, Brian J Bennett","doi":"10.1186/s40168-025-02130-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Early-life exposure to environmental factors can have long-lasting impacts on offspring health into adulthood and therefore is an emerging public health concern. In particular, the impact of maternal environmental exposures such as diet and antibiotic use on the establishment of the offspring gut microbiome has been recently highlighted as a potential link to disease risk. However, the long-term effects are poorly understood. Moreover, interindividual host genetic differences have also been implicated in modulating the gut microbiome, suggesting that these differences may modulate susceptibility to environmentally induced dysbiosis and exacerbate related health outcomes. Our understanding of how the developmental environment and genetics interact to modulate offspring long-term gut microbiota and health is still limited.</p><p><strong>Methods: </strong>In this study, we investigated the effects of early exposure to known or putative dietary insults on the microbiome (antibiotic exposure, protein deficiency, and vitamin D deficiency) in a novel population of mice. Dams were maintained on purified AIN93G antibiotic-containing (AC), low-protein (LP), low-vitamin D (LVD), or mouse control (CON) diets from 5 weeks prior to pregnancy until the end of lactation. After weaning, mice were transferred to new cages and fed a standardized chow diet. The parent-of-origin (PO) effect was determined via F1 offspring from reciprocal crosses of recombinant inbred intercross (RIX) of Collaborative Cross (CC) mice, where all F1 offspring within a reciprocal pair were genetically identical except for the X- and Y-chromosomes and mitochondrial genomes. We assayed offspring bodyweight and the gut bacterial microbiota via 16S rRNA gene sequencing at 8 weeks of age.</p><p><strong>Results: </strong>Our study revealed that early developmental exposure to antibiotics, protein deficiency, and vitamin D deficiency had long-lasting effects on offspring bodyweight and gut microbial diversity and composition, depending on the genetic background. Several bacterial genera and ASVs, including Bacteroides, Muribaculaceae, Akkermansia, and Bifidobacterium, are influenced by developmental insults. We also observed a significant effect of PO on offspring gut microbiota and growth. For example, the offspring of CC011xCC001 mice had increased bodyweight, microbial diversity indices, and several differential bacterial abundances, including those of Faecalibaculum, compared with those of the corresponding reciprocal cross CC001xCC011.</p><p><strong>Conclusion: </strong>Our results show that maternal exposure to nutritional deficiencies and antibiotics during gestation and lactation has a lasting impact on offspring gut microbiota composition. The specific responses to a diet or antibiotic can vary among F1 strains and may be driven by maternal genetics. Video Abstract.</p>","PeriodicalId":18447,"journal":{"name":"Microbiome","volume":"13 1","pages":"143"},"PeriodicalIF":13.8000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12168266/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbiome","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s40168-025-02130-w","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Early-life exposure to environmental factors can have long-lasting impacts on offspring health into adulthood and therefore is an emerging public health concern. In particular, the impact of maternal environmental exposures such as diet and antibiotic use on the establishment of the offspring gut microbiome has been recently highlighted as a potential link to disease risk. However, the long-term effects are poorly understood. Moreover, interindividual host genetic differences have also been implicated in modulating the gut microbiome, suggesting that these differences may modulate susceptibility to environmentally induced dysbiosis and exacerbate related health outcomes. Our understanding of how the developmental environment and genetics interact to modulate offspring long-term gut microbiota and health is still limited.
Methods: In this study, we investigated the effects of early exposure to known or putative dietary insults on the microbiome (antibiotic exposure, protein deficiency, and vitamin D deficiency) in a novel population of mice. Dams were maintained on purified AIN93G antibiotic-containing (AC), low-protein (LP), low-vitamin D (LVD), or mouse control (CON) diets from 5 weeks prior to pregnancy until the end of lactation. After weaning, mice were transferred to new cages and fed a standardized chow diet. The parent-of-origin (PO) effect was determined via F1 offspring from reciprocal crosses of recombinant inbred intercross (RIX) of Collaborative Cross (CC) mice, where all F1 offspring within a reciprocal pair were genetically identical except for the X- and Y-chromosomes and mitochondrial genomes. We assayed offspring bodyweight and the gut bacterial microbiota via 16S rRNA gene sequencing at 8 weeks of age.
Results: Our study revealed that early developmental exposure to antibiotics, protein deficiency, and vitamin D deficiency had long-lasting effects on offspring bodyweight and gut microbial diversity and composition, depending on the genetic background. Several bacterial genera and ASVs, including Bacteroides, Muribaculaceae, Akkermansia, and Bifidobacterium, are influenced by developmental insults. We also observed a significant effect of PO on offspring gut microbiota and growth. For example, the offspring of CC011xCC001 mice had increased bodyweight, microbial diversity indices, and several differential bacterial abundances, including those of Faecalibaculum, compared with those of the corresponding reciprocal cross CC001xCC011.
Conclusion: Our results show that maternal exposure to nutritional deficiencies and antibiotics during gestation and lactation has a lasting impact on offspring gut microbiota composition. The specific responses to a diet or antibiotic can vary among F1 strains and may be driven by maternal genetics. Video Abstract.
期刊介绍:
Microbiome is a journal that focuses on studies of microbiomes in humans, animals, plants, and the environment. It covers both natural and manipulated microbiomes, such as those in agriculture. The journal is interested in research that uses meta-omics approaches or novel bioinformatics tools and emphasizes the community/host interaction and structure-function relationship within the microbiome. Studies that go beyond descriptive omics surveys and include experimental or theoretical approaches will be considered for publication. The journal also encourages research that establishes cause and effect relationships and supports proposed microbiome functions. However, studies of individual microbial isolates/species without exploring their impact on the host or the complex microbiome structures and functions will not be considered for publication. Microbiome is indexed in BIOSIS, Current Contents, DOAJ, Embase, MEDLINE, PubMed, PubMed Central, and Science Citations Index Expanded.