Transcriptomic Changes and Pathological Mechanisms in Familial and Sporadic Idiopathic Restless Legs Syndrome: Implications for Inflammation and Cell Adhesion Molecules.
{"title":"Transcriptomic Changes and Pathological Mechanisms in Familial and Sporadic Idiopathic Restless Legs Syndrome: Implications for Inflammation and Cell Adhesion Molecules.","authors":"Xin-Rong He, Jia-Min Song, Jia-Peng Zhao, Jing Zhang, Jing-Tao Feng, Shu-Qin Chen, Zhi-Yuan Zhou, Hong-Ming Wang, Yue Zhang, Ya Feng, Yun-Cheng Wu, Xiao-Ying Zhu","doi":"10.2147/NSS.S512951","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Individuals affected by restless legs syndrome (RLS) tend to have familial predispositions without fully explained by genetic variants, and transcriptomic analysis may help elucidate the pathogenic mechanisms of RLS. The study aims to investigate transcriptomic changes and underlying pathological mechanisms in familial and sporadic idiopathic RLS to uncover potential contributors to its pathogenesis.</p><p><strong>Patients and methods: </strong>This study included 37 RLS patients, 39 unrelated healthy controls and 19 healthy relatives of RLS patients with a positive family history. Messenger RNA (mRNA) extracted from the peripheral blood mononuclear cells of these participants was analyzed via next-generation sequencing, followed by GO and KEGG pathway analyses. Differentially expressed mRNAs were validated by RT-qPCR in a subset of patients and controls. The relationships between the expression levels and clinical indices were evaluated via correlation analysis.</p><p><strong>Results: </strong>After comparing with unrelated healthy controls and excluding genes with similar expression patterns in familial healthy controls, we identified nine upregulated and 28 downregulated mRNAs specifically in RLS patients. GO enrichment analysis indicated that these mRNAs are involved in protein binding and catalytic activity. KEGG analysis revealed that inflammation-related signaling pathways and cell adhesion molecules (CAMs) may be associated with RLS. Three specific mRNAs, including SPARCL1, CCL8 and SELE, demonstrated notably downregulated expression in RLS patients and were subsequently validated in a subset of 10 patients and 19 healthy controls.</p><p><strong>Conclusion: </strong>This study revealed differentially expressed SPARCL1, CCL8 and SELE in RLS patients, indicating the potential involvement of inflammatory pathways and CAMs in RLS pathogenesis. These findings further support the association between RLS, inflammation, and synaptic transmission, providing insights into potential diagnostic and therapeutic strategies targeting these pathways.</p>","PeriodicalId":18896,"journal":{"name":"Nature and Science of Sleep","volume":"17 ","pages":"1231-1247"},"PeriodicalIF":3.4000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12168914/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature and Science of Sleep","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/NSS.S512951","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: Individuals affected by restless legs syndrome (RLS) tend to have familial predispositions without fully explained by genetic variants, and transcriptomic analysis may help elucidate the pathogenic mechanisms of RLS. The study aims to investigate transcriptomic changes and underlying pathological mechanisms in familial and sporadic idiopathic RLS to uncover potential contributors to its pathogenesis.
Patients and methods: This study included 37 RLS patients, 39 unrelated healthy controls and 19 healthy relatives of RLS patients with a positive family history. Messenger RNA (mRNA) extracted from the peripheral blood mononuclear cells of these participants was analyzed via next-generation sequencing, followed by GO and KEGG pathway analyses. Differentially expressed mRNAs were validated by RT-qPCR in a subset of patients and controls. The relationships between the expression levels and clinical indices were evaluated via correlation analysis.
Results: After comparing with unrelated healthy controls and excluding genes with similar expression patterns in familial healthy controls, we identified nine upregulated and 28 downregulated mRNAs specifically in RLS patients. GO enrichment analysis indicated that these mRNAs are involved in protein binding and catalytic activity. KEGG analysis revealed that inflammation-related signaling pathways and cell adhesion molecules (CAMs) may be associated with RLS. Three specific mRNAs, including SPARCL1, CCL8 and SELE, demonstrated notably downregulated expression in RLS patients and were subsequently validated in a subset of 10 patients and 19 healthy controls.
Conclusion: This study revealed differentially expressed SPARCL1, CCL8 and SELE in RLS patients, indicating the potential involvement of inflammatory pathways and CAMs in RLS pathogenesis. These findings further support the association between RLS, inflammation, and synaptic transmission, providing insights into potential diagnostic and therapeutic strategies targeting these pathways.
期刊介绍:
Nature and Science of Sleep is an international, peer-reviewed, open access journal covering all aspects of sleep science and sleep medicine, including the neurophysiology and functions of sleep, the genetics of sleep, sleep and society, biological rhythms, dreaming, sleep disorders and therapy, and strategies to optimize healthy sleep.
Specific topics covered in the journal include:
The functions of sleep in humans and other animals
Physiological and neurophysiological changes with sleep
The genetics of sleep and sleep differences
The neurotransmitters, receptors and pathways involved in controlling both sleep and wakefulness
Behavioral and pharmacological interventions aimed at improving sleep, and improving wakefulness
Sleep changes with development and with age
Sleep and reproduction (e.g., changes across the menstrual cycle, with pregnancy and menopause)
The science and nature of dreams
Sleep disorders
Impact of sleep and sleep disorders on health, daytime function and quality of life
Sleep problems secondary to clinical disorders
Interaction of society with sleep (e.g., consequences of shift work, occupational health, public health)
The microbiome and sleep
Chronotherapy
Impact of circadian rhythms on sleep, physiology, cognition and health
Mechanisms controlling circadian rhythms, centrally and peripherally
Impact of circadian rhythm disruptions (including night shift work, jet lag and social jet lag) on sleep, physiology, cognition and health
Behavioral and pharmacological interventions aimed at reducing adverse effects of circadian-related sleep disruption
Assessment of technologies and biomarkers for measuring sleep and/or circadian rhythms
Epigenetic markers of sleep or circadian disruption.