Rapid Griess assay (RGA): a chairside test for ex vivo semi-quantitative oral nitrite measurement and in vitro assessment of nitrite production by oral bacteria.
Simeon K B Mavropoulos, Rabi Zaiton, Amina Basic, Gunnar Dahlén
{"title":"Rapid Griess assay (RGA): a chairside test for <i>ex vivo</i> semi-quantitative oral nitrite measurement and <i>in vitro</i> assessment of nitrite production by oral bacteria.","authors":"Simeon K B Mavropoulos, Rabi Zaiton, Amina Basic, Gunnar Dahlén","doi":"10.1080/20002297.2025.2517039","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Nitrite (NO<sub>2</sub> <sup>-</sup>) is produced through enzymatic reduction of dietary nitrate (NO<sub>3</sub> <sup>-</sup>) by oral bacteria: a process contributing to cardiovascular - and possibly oral - health. NO<sub>2</sub> <sup>-</sup> quantitation in biological samples is a complex exercise, and available methods are not well-adapted for chairside use. Therefore, we aimed to develop and evaluate a semi-quantitative chairside test for NO<sub>2</sub> <sup>-</sup> in oral samples. We also evaluated NO<sub>2</sub> <sup>-</sup> generation in several bacterial species <i>in vitro</i>.</p><p><strong>Materials and methods: </strong>From 12 healthy individuals, tongue, saliva and plaque samples were collected and evaluated chairside across 4 weeks, using the rapid Griess assay (RGA). The RGA was further used to test bacterial species for NO<sub>2</sub> <sup>-</sup> production.</p><p><strong>Results: </strong>In saliva, plaque and tongue samples, low, variable and high NO<sub>2</sub> <sup>-</sup> levels, respectively, were found. Tongue samples were the most stable over time. High and medium NO<sub>2</sub> <sup>-</sup> production capacities were shown by <i>Actinomyces</i> spp. (including <i>Schaalia odontolytica</i>), <i>Veillonella parvula,</i> and <i>Rothia</i> spp. RGA results were reproducible.</p><p><strong>Conclusion: </strong>The RGA provided stable and reliable results for chairside NO<sub>2</sub> <sup>-</sup> semi-quantitation, and revealed elevated and stable NO<sub>2</sub> <sup>-</sup> levels on the tongue. <i>In vitro</i>, bacterial NO<sub>2</sub> <sup>-</sup> production was consistent with the available literature, but uncertainty remains regarding <i>Neisseria</i> spp. Our results showed promise for clinical and research applications of the RGA.</p>","PeriodicalId":16598,"journal":{"name":"Journal of Oral Microbiology","volume":"17 1","pages":"2517039"},"PeriodicalIF":3.7000,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12168414/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Oral Microbiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/20002297.2025.2517039","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Nitrite (NO2-) is produced through enzymatic reduction of dietary nitrate (NO3-) by oral bacteria: a process contributing to cardiovascular - and possibly oral - health. NO2- quantitation in biological samples is a complex exercise, and available methods are not well-adapted for chairside use. Therefore, we aimed to develop and evaluate a semi-quantitative chairside test for NO2- in oral samples. We also evaluated NO2- generation in several bacterial species in vitro.
Materials and methods: From 12 healthy individuals, tongue, saliva and plaque samples were collected and evaluated chairside across 4 weeks, using the rapid Griess assay (RGA). The RGA was further used to test bacterial species for NO2- production.
Results: In saliva, plaque and tongue samples, low, variable and high NO2- levels, respectively, were found. Tongue samples were the most stable over time. High and medium NO2- production capacities were shown by Actinomyces spp. (including Schaalia odontolytica), Veillonella parvula, and Rothia spp. RGA results were reproducible.
Conclusion: The RGA provided stable and reliable results for chairside NO2- semi-quantitation, and revealed elevated and stable NO2- levels on the tongue. In vitro, bacterial NO2- production was consistent with the available literature, but uncertainty remains regarding Neisseria spp. Our results showed promise for clinical and research applications of the RGA.
期刊介绍:
As the first Open Access journal in its field, the Journal of Oral Microbiology aims to be an influential source of knowledge on the aetiological agents behind oral infectious diseases. The journal is an international forum for original research on all aspects of ''oral health''. Articles which seek to understand ''oral health'' through exploration of the pathogenesis, virulence, host-parasite interactions, and immunology of oral infections are of particular interest. However, the journal also welcomes work that addresses the global agenda of oral infectious diseases and articles that present new strategies for treatment and prevention or improvements to existing strategies.
Topics: ''oral health'', microbiome, genomics, host-pathogen interactions, oral infections, aetiologic agents, pathogenesis, molecular microbiology systemic diseases, ecology/environmental microbiology, treatment, diagnostics, epidemiology, basic oral microbiology, and taxonomy/systematics.
Article types: original articles, notes, review articles, mini-reviews and commentaries