The dawn of a new era: can machine learning and large language models reshape QSP modeling?

IF 2.2 4区 医学 Q3 PHARMACOLOGY & PHARMACY
Ioannis P Androulakis, Lourdes Cucurull-Sanchez, Anna Kondic, Krina Mehta, Cesar Pichardo, Meghan Pryor, Marissa Renardy
{"title":"The dawn of a new era: can machine learning and large language models reshape QSP modeling?","authors":"Ioannis P Androulakis, Lourdes Cucurull-Sanchez, Anna Kondic, Krina Mehta, Cesar Pichardo, Meghan Pryor, Marissa Renardy","doi":"10.1007/s10928-025-09984-5","DOIUrl":null,"url":null,"abstract":"<p><p>Quantitative Systems Pharmacology (QSP) has emerged as a cornerstone of modern drug development, providing a robust framework to integrate data from preclinical and clinical studies, enhance decision-making, and optimize therapeutic strategies. By modeling biological systems and drug interactions, QSP enables predictions of outcomes, optimization of dosing regimens, and personalized medicine applications. Recent advancements in artificial intelligence (AI) and machine learning (ML) hold the potential to significantly transform QSP by enabling enhanced data extraction, fostering the development of hybrid mechanistic ML models, and supporting the introduction of surrogate models and digital twins. This manuscript explores the transformative role of AI and ML in reshaping QSP modeling workflows. AI/ML tools now enable automated literature mining, the generation of dynamic models from data, and the creation of hybrid frameworks that blend mechanistic insights with data-driven approaches. Large Language Models (LLMs) further revolutionize the field by transitioning AI/ML from merely a tool to becoming an active partner in QSP modeling. By facilitating interdisciplinary collaboration, lowering barriers to entry, and democratizing QSP workflows, LLMs empower researchers without deep coding expertise to engage in complex modeling tasks. Additionally, the integration of Artificial General Intelligence (AGI) holds the potential to autonomously propose, refine, and validate models, further accelerating innovation across multiscale biological processes. Key challenges remain in integrating AI/ML into QSP workflows, particularly in ensuring rigorous validation pipelines, addressing ethical considerations, and establishing robust regulatory frameworks to address the reliability and reproducibility of AI-assisted models. Moreover, the complexity of multiscale biological integration, effective data management, and fostering interdisciplinary collaboration present ongoing hurdles. Despite these challenges, the potential of AI/ML to enhance hybrid model development, improve model interpretability, and democratize QSP modeling offers an exciting opportunity to revolutionize drug development and therapeutic innovation. This work highlights a pathway toward a transformative era for QSP, leveraging advancements in AI and ML to address these challenges and drive innovation in the field.</p>","PeriodicalId":16851,"journal":{"name":"Journal of Pharmacokinetics and Pharmacodynamics","volume":"52 4","pages":"36"},"PeriodicalIF":2.2000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pharmacokinetics and Pharmacodynamics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10928-025-09984-5","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Quantitative Systems Pharmacology (QSP) has emerged as a cornerstone of modern drug development, providing a robust framework to integrate data from preclinical and clinical studies, enhance decision-making, and optimize therapeutic strategies. By modeling biological systems and drug interactions, QSP enables predictions of outcomes, optimization of dosing regimens, and personalized medicine applications. Recent advancements in artificial intelligence (AI) and machine learning (ML) hold the potential to significantly transform QSP by enabling enhanced data extraction, fostering the development of hybrid mechanistic ML models, and supporting the introduction of surrogate models and digital twins. This manuscript explores the transformative role of AI and ML in reshaping QSP modeling workflows. AI/ML tools now enable automated literature mining, the generation of dynamic models from data, and the creation of hybrid frameworks that blend mechanistic insights with data-driven approaches. Large Language Models (LLMs) further revolutionize the field by transitioning AI/ML from merely a tool to becoming an active partner in QSP modeling. By facilitating interdisciplinary collaboration, lowering barriers to entry, and democratizing QSP workflows, LLMs empower researchers without deep coding expertise to engage in complex modeling tasks. Additionally, the integration of Artificial General Intelligence (AGI) holds the potential to autonomously propose, refine, and validate models, further accelerating innovation across multiscale biological processes. Key challenges remain in integrating AI/ML into QSP workflows, particularly in ensuring rigorous validation pipelines, addressing ethical considerations, and establishing robust regulatory frameworks to address the reliability and reproducibility of AI-assisted models. Moreover, the complexity of multiscale biological integration, effective data management, and fostering interdisciplinary collaboration present ongoing hurdles. Despite these challenges, the potential of AI/ML to enhance hybrid model development, improve model interpretability, and democratize QSP modeling offers an exciting opportunity to revolutionize drug development and therapeutic innovation. This work highlights a pathway toward a transformative era for QSP, leveraging advancements in AI and ML to address these challenges and drive innovation in the field.

新时代的曙光:机器学习和大型语言模型能否重塑QSP建模?
定量系统药理学(QSP)已经成为现代药物开发的基石,提供了一个强大的框架来整合临床前和临床研究的数据,加强决策,优化治疗策略。通过对生物系统和药物相互作用进行建模,QSP能够预测结果、优化给药方案和个性化药物应用。人工智能(AI)和机器学习(ML)的最新进展有可能通过增强数据提取,促进混合机械ML模型的发展,以及支持引入代理模型和数字双胞胎来显着改变QSP。本文探讨了人工智能和机器学习在重塑QSP建模工作流程中的变革作用。AI/ML工具现在支持自动文献挖掘,从数据中生成动态模型,以及创建混合框架,将机械见解与数据驱动方法相结合。大型语言模型(llm)通过将AI/ML从仅仅是一个工具转变为QSP建模的积极合作伙伴,进一步革新了该领域。通过促进跨学科合作,降低进入门槛,并使QSP工作流程民主化,llm使没有深厚编码专业知识的研究人员能够从事复杂的建模任务。此外,通用人工智能(AGI)的集成具有自主提出、完善和验证模型的潜力,进一步加速了跨多尺度生物过程的创新。将AI/ML集成到QSP工作流程中仍然存在主要挑战,特别是在确保严格的验证管道,解决道德问题以及建立强大的监管框架以解决AI辅助模型的可靠性和可重复性方面。此外,多尺度生物整合的复杂性、有效的数据管理和促进跨学科合作也存在持续的障碍。尽管存在这些挑战,但AI/ML在增强混合模型开发、提高模型可解释性和QSP建模民主化方面的潜力为彻底改变药物开发和治疗创新提供了一个令人兴奋的机会。这项工作强调了通往QSP变革时代的途径,利用人工智能和机器学习的进步来应对这些挑战并推动该领域的创新。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.90
自引率
4.00%
发文量
39
审稿时长
6-12 weeks
期刊介绍: Broadly speaking, the Journal of Pharmacokinetics and Pharmacodynamics covers the area of pharmacometrics. The journal is devoted to illustrating the importance of pharmacokinetics, pharmacodynamics, and pharmacometrics in drug development, clinical care, and the understanding of drug action. The journal publishes on a variety of topics related to pharmacometrics, including, but not limited to, clinical, experimental, and theoretical papers examining the kinetics of drug disposition and effects of drug action in humans, animals, in vitro, or in silico; modeling and simulation methodology, including optimal design; precision medicine; systems pharmacology; and mathematical pharmacology (including computational biology, bioengineering, and biophysics related to pharmacology, pharmacokinetics, orpharmacodynamics). Clinical papers that include population pharmacokinetic-pharmacodynamic relationships are welcome. The journal actively invites and promotes up-and-coming areas of pharmacometric research, such as real-world evidence, quality of life analyses, and artificial intelligence. The Journal of Pharmacokinetics and Pharmacodynamics is an official journal of the International Society of Pharmacometrics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信