Zhe Chen, Xiaomeng Zhang, Mingxi Deng, Chongyang Li, Thi Thuy Nguyen, Min Liu, Kun Dou, Toyotaka Ishibashi, Jiguang Wang, Yan Yan
{"title":"Epigenetic reprogramming induced by key metabolite depletion is an evolutionarily ancient path to tumorigenesis.","authors":"Zhe Chen, Xiaomeng Zhang, Mingxi Deng, Chongyang Li, Thi Thuy Nguyen, Min Liu, Kun Dou, Toyotaka Ishibashi, Jiguang Wang, Yan Yan","doi":"10.1242/dmm.052313","DOIUrl":null,"url":null,"abstract":"<p><p>Tumor growth is a challenge for multicellular life forms. Contrary to human tumors, which take years to form, tumors in short-living species can arise within days without accumulating multiple mutations, raising the question whether the paths to tumorigenesis in diverse species have any commonalities. In a fly tumor model caused by loss of cell polarity genes, we identified two key metabolic changes: first, systemic depletion of acetyl-CoA leading to a reduction in histone acetylation levels and stochastic silencing of actively transcribed genes; and second, defects in the methionine cycle causing systemic depletion of S-adenosyl methionine, which further reduces histone methylation levels and causes stochastic activation of transposons. Perturbation of the methionine metabolic process inhibits tumor growth. To understand the evolutionary origin of tumorigenesis, we performed comparative studies of fly and human tumors and found that human tumors with metabolic signatures similar to those of fly tumors have a lower mutational load, younger patient age and lower DNA methylation levels. This study indicates that depletion of key metabolites is an evolutionarily ancient driving force for tumorigenesis.</p>","PeriodicalId":11144,"journal":{"name":"Disease Models & Mechanisms","volume":"18 6","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12208194/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Disease Models & Mechanisms","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1242/dmm.052313","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/16 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Tumor growth is a challenge for multicellular life forms. Contrary to human tumors, which take years to form, tumors in short-living species can arise within days without accumulating multiple mutations, raising the question whether the paths to tumorigenesis in diverse species have any commonalities. In a fly tumor model caused by loss of cell polarity genes, we identified two key metabolic changes: first, systemic depletion of acetyl-CoA leading to a reduction in histone acetylation levels and stochastic silencing of actively transcribed genes; and second, defects in the methionine cycle causing systemic depletion of S-adenosyl methionine, which further reduces histone methylation levels and causes stochastic activation of transposons. Perturbation of the methionine metabolic process inhibits tumor growth. To understand the evolutionary origin of tumorigenesis, we performed comparative studies of fly and human tumors and found that human tumors with metabolic signatures similar to those of fly tumors have a lower mutational load, younger patient age and lower DNA methylation levels. This study indicates that depletion of key metabolites is an evolutionarily ancient driving force for tumorigenesis.
期刊介绍:
Disease Models & Mechanisms (DMM) is an online Open Access journal focusing on the use of model systems to better understand, diagnose and treat human disease.