{"title":"Location and dynamics of astaxanthin in the membrane","authors":"José Villalaín","doi":"10.1016/j.chemphyslip.2025.105512","DOIUrl":null,"url":null,"abstract":"<div><div>Astaxanthin (ASX) is a natural xanthophyll carotenoid recognized for its strong antioxidant bioactive function, and it has been used in the prevention of heart disease, inflammation, neurological disorders, scavenger of environmental produced free radicals and as an anti-aging and anti-cancer biomolecule. ASX is a long lipophilic molecule with two terminal relatively polar rings connected by a long hydrophobic chain. This work describes the dynamics, orientation, location and interactions of ASX in a complex biomembrane. In water, ASX form high-order aggregates where the molecules are joined together by the hydrophobic chain. Depending on the number of ASX molecules, the aggregates can have different structures and the polar groups positioned superficially contacting the solvent. ASX molecules are not able to insert themselves into the membrane, forming high-order aggregates quickly. In the membrane, ASX molecules do not aggregate, remaining all time in the monomeric state. ASX is capable of reaching both membrane surfaces, one at a time. The ASX molecules form an approximate angle of 20º with respect to the membrane perpendicular and it is inserted between the phospholipid hydrocarbon chains, increasing slightly the membrane fluidity. ASX is readily miscible with membrane phospholipids and its location within the membrane is suited for its potent antioxidant activity. Furthermore, since ASX has two polar groups at both ends, the molecule can function in a wide range of depths. ASX is therefore perfectly suited for its antioxidant task in the membrane.</div></div>","PeriodicalId":275,"journal":{"name":"Chemistry and Physics of Lipids","volume":"270 ","pages":"Article 105512"},"PeriodicalIF":2.8000,"publicationDate":"2025-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry and Physics of Lipids","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0009308425000489","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Astaxanthin (ASX) is a natural xanthophyll carotenoid recognized for its strong antioxidant bioactive function, and it has been used in the prevention of heart disease, inflammation, neurological disorders, scavenger of environmental produced free radicals and as an anti-aging and anti-cancer biomolecule. ASX is a long lipophilic molecule with two terminal relatively polar rings connected by a long hydrophobic chain. This work describes the dynamics, orientation, location and interactions of ASX in a complex biomembrane. In water, ASX form high-order aggregates where the molecules are joined together by the hydrophobic chain. Depending on the number of ASX molecules, the aggregates can have different structures and the polar groups positioned superficially contacting the solvent. ASX molecules are not able to insert themselves into the membrane, forming high-order aggregates quickly. In the membrane, ASX molecules do not aggregate, remaining all time in the monomeric state. ASX is capable of reaching both membrane surfaces, one at a time. The ASX molecules form an approximate angle of 20º with respect to the membrane perpendicular and it is inserted between the phospholipid hydrocarbon chains, increasing slightly the membrane fluidity. ASX is readily miscible with membrane phospholipids and its location within the membrane is suited for its potent antioxidant activity. Furthermore, since ASX has two polar groups at both ends, the molecule can function in a wide range of depths. ASX is therefore perfectly suited for its antioxidant task in the membrane.
期刊介绍:
Chemistry and Physics of Lipids publishes research papers and review articles on chemical and physical aspects of lipids with primary emphasis on the relationship of these properties to biological functions and to biomedical applications.
Accordingly, the journal covers: advances in synthetic and analytical lipid methodology; mass-spectrometry of lipids; chemical and physical characterisation of isolated structures; thermodynamics, phase behaviour, topology and dynamics of lipid assemblies; physicochemical studies into lipid-lipid and lipid-protein interactions in lipoproteins and in natural and model membranes; movement of lipids within, across and between membranes; intracellular lipid transfer; structure-function relationships and the nature of lipid-derived second messengers; chemical, physical and functional alterations of lipids induced by free radicals; enzymatic and non-enzymatic mechanisms of lipid peroxidation in cells, tissues, biofluids; oxidative lipidomics; and the role of lipids in the regulation of membrane-dependent biological processes.