Closed-Loop Recyclable Vitrimer Plastics from PET Waste: A Design for Circularity.

IF 6.6 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ChemSusChem Pub Date : 2025-06-17 DOI:10.1002/cssc.202500898
Mary K Danielson, Catalin Gainaru, Zoriana Demchuk, Chuyi Pan, Jihye Choi, Hong-Hai Zhang, Jeffrey C Foster, Tomonori Saito, Md Anisur Rahman
{"title":"Closed-Loop Recyclable Vitrimer Plastics from PET Waste: A Design for Circularity.","authors":"Mary K Danielson, Catalin Gainaru, Zoriana Demchuk, Chuyi Pan, Jihye Choi, Hong-Hai Zhang, Jeffrey C Foster, Tomonori Saito, Md Anisur Rahman","doi":"10.1002/cssc.202500898","DOIUrl":null,"url":null,"abstract":"<p><p>Plastics are essential to modern society, but their low recycling rates and inefficient end-of-life management pose a significant environmental challenge. Herein, the efficient strategy for upcycling postconsumer poly(ethylene terephthalate) (PET) waste into robust, closed-loop recyclable vitrimer plastics and composites is presented to address this issue. The catalyst-free aminolysis utilizes readily available amines to deconstruct diverse PET wastes into macromonomers, which are upcycled into vitrimers, exhibiting superior mechanical properties and exceeding the ultimate tensile stress and Young's Modulus of virgin PET by 80% and 150% respectively. These vitrimers exhibit excellent healability, shape memory, thermal reprocessability, and closed-loop chemical recyclability, enabling quantitative macromonomer recovery even from mixed plastic waste streams and glass/carbon fiber reinforced vitrimer (G/CFRV) composites. Furthermore, the vitrimer resin yields robust GFRV and CFRV composites with tensile strengths exceeding those of traditional epoxy composites by 100% and 80%, respectively, while maintaining complete chemical recyclability of both constituent materials. A preliminary technoeconomic analysis confirms the costeffectiveness and competitiveness of the facile PET deconstruction approach, which is potentially adaptable to other condensation polymers. This study presents a facile approach to upcycling plastic waste into circular plastics and composites, offering a sustainable solution to global plastic waste management and fostering a circular economy.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e2500898"},"PeriodicalIF":6.6000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202500898","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Plastics are essential to modern society, but their low recycling rates and inefficient end-of-life management pose a significant environmental challenge. Herein, the efficient strategy for upcycling postconsumer poly(ethylene terephthalate) (PET) waste into robust, closed-loop recyclable vitrimer plastics and composites is presented to address this issue. The catalyst-free aminolysis utilizes readily available amines to deconstruct diverse PET wastes into macromonomers, which are upcycled into vitrimers, exhibiting superior mechanical properties and exceeding the ultimate tensile stress and Young's Modulus of virgin PET by 80% and 150% respectively. These vitrimers exhibit excellent healability, shape memory, thermal reprocessability, and closed-loop chemical recyclability, enabling quantitative macromonomer recovery even from mixed plastic waste streams and glass/carbon fiber reinforced vitrimer (G/CFRV) composites. Furthermore, the vitrimer resin yields robust GFRV and CFRV composites with tensile strengths exceeding those of traditional epoxy composites by 100% and 80%, respectively, while maintaining complete chemical recyclability of both constituent materials. A preliminary technoeconomic analysis confirms the costeffectiveness and competitiveness of the facile PET deconstruction approach, which is potentially adaptable to other condensation polymers. This study presents a facile approach to upcycling plastic waste into circular plastics and composites, offering a sustainable solution to global plastic waste management and fostering a circular economy.

由PET废料制成的闭环可回收玻璃体塑料:循环设计。
塑料对现代社会至关重要,但其低回收率和低效的报废管理构成了重大的环境挑战。在这里,我们提出了一种有效的策略,将消费后的聚对苯二甲酸乙二醇酯(PET)废物升级为坚固的、闭环可回收的玻璃钢塑料和复合材料,以解决这一问题。我们的无催化剂氨解利用现成的胺将各种PET废物分解成大单体,这些大单体被升级为玻璃塑料,具有优越的机械性能,并比原始PET的极限拉伸应力和杨氏模量分别高出80%和150%。这些玻璃体具有优异的可愈合性、形状记忆性、热再加工性和闭环化学可回收性,甚至可以从混合塑料废物流和玻璃/碳纤维增强玻璃体复合材料中定量回收大单体。此外,玻璃体树脂制备的GFRV和CFRV复合材料的抗拉强度分别超过传统环氧复合材料的100%和80%,同时保持了两种成分材料的完全化学可回收性。初步的技术经济分析证实了我们简便的PET解构方法的成本效益和竞争力,该方法可能适用于其他缩合聚合物。本研究提出了一种简单的方法,将塑料废物升级为多用途的循环塑料,为全球塑料废物管理和促进循环塑料经济提供了可持续的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ChemSusChem
ChemSusChem 化学-化学综合
CiteScore
15.80
自引率
4.80%
发文量
555
审稿时长
1.8 months
期刊介绍: ChemSusChem Impact Factor (2016): 7.226 Scope: Interdisciplinary journal Focuses on research at the interface of chemistry and sustainability Features the best research on sustainability and energy Areas Covered: Chemistry Materials Science Chemical Engineering Biotechnology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信