Reductant- or Light-Driven ATP-Independent Reduction of CO2 by Nitrogenase MoFe Protein.

IF 2.6 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
ChemBioChem Pub Date : 2025-06-16 DOI:10.1002/cbic.202500366
Chi Chung Lee, Yilin Hu, Markus W Ribbe
{"title":"Reductant- or Light-Driven ATP-Independent Reduction of CO<sub>2</sub> by Nitrogenase MoFe Protein.","authors":"Chi Chung Lee, Yilin Hu, Markus W Ribbe","doi":"10.1002/cbic.202500366","DOIUrl":null,"url":null,"abstract":"<p><p>Nitrogenase is a versatile metalloenzyme that activates and reduces small molecules like N<sub>2</sub>, CO, and CO<sub>2</sub> into value-added chemicals at ambient conditions. Previously, it is shown that the Mo-nitrogenase could reduce CO<sub>2</sub> to CO, but not to hydrocarbons, in an ATP-dependent reaction. Here, it is reported that the ability of the catalytic component of Mo-nitrogenase (MoFe protein) enables ATP-independent reduction of CO<sub>2</sub> to up to C<sub>4</sub> hydrocarbons in room-temperature reactions driven by a chemical reductant (Eu<sup>II</sup>-DTPA) or visible light (via CdS@ZnS (CZS) quantum dots). Moreover, an opposite deuterium isotope effect is observed on the Eu<sup>II</sup>-DTPA driven reactions of CO<sub>2</sub> reduction by MoFe protein and its V-counterpart (VFe protein), in that the former displays higher activities in H<sub>2</sub>O, and the latter displays higher activities in D<sub>2</sub>O. These results provide an important foundation for further mechanistic exploration of the nitrogenase-enabled, atypical Fischer-Tropsch type reaction that uses CO<sub>2</sub> instead of CO as a substrate; moreover, they serves as a potential template for the future development of nitrogenase-based applications that effectively recycle the greenhouse gas CO<sub>2</sub> into valuable fuel products.</p>","PeriodicalId":140,"journal":{"name":"ChemBioChem","volume":" ","pages":"e2500366"},"PeriodicalIF":2.6000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12292853/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemBioChem","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/cbic.202500366","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Nitrogenase is a versatile metalloenzyme that activates and reduces small molecules like N2, CO, and CO2 into value-added chemicals at ambient conditions. Previously, it is shown that the Mo-nitrogenase could reduce CO2 to CO, but not to hydrocarbons, in an ATP-dependent reaction. Here, it is reported that the ability of the catalytic component of Mo-nitrogenase (MoFe protein) enables ATP-independent reduction of CO2 to up to C4 hydrocarbons in room-temperature reactions driven by a chemical reductant (EuII-DTPA) or visible light (via CdS@ZnS (CZS) quantum dots). Moreover, an opposite deuterium isotope effect is observed on the EuII-DTPA driven reactions of CO2 reduction by MoFe protein and its V-counterpart (VFe protein), in that the former displays higher activities in H2O, and the latter displays higher activities in D2O. These results provide an important foundation for further mechanistic exploration of the nitrogenase-enabled, atypical Fischer-Tropsch type reaction that uses CO2 instead of CO as a substrate; moreover, they serves as a potential template for the future development of nitrogenase-based applications that effectively recycle the greenhouse gas CO2 into valuable fuel products.

氮酶MoFe蛋白在还原剂或光驱动下不依赖atp的CO2还原。
氮酶是一种多功能的金属酶,在环境条件下,它可以激活和减少像N2、CO和CO2这样的小分子,使其变成增值的化学物质。在此之前,我们发现在atp依赖性反应中,Monitrogenase可以将CO2还原为CO,而不能将其还原为碳氢化合物。在这里,我们报告了监测酶(MoFe蛋白)的催化成分能够在化学还原剂(EuII-DTPA)或可见光(通过cz量子点)驱动的室温反应中,使CO2不依赖atp分别还原为高达C4和C2碳氢化合物。此外,我们观察到氘同位素对MoFe蛋白和VFe蛋白(VFe蛋白)在EuII-DTPA驱动的CO2还原反应有相反的影响,前者在H2O中表现出更高的活性,后者在D2O中表现出更高的活性。这些结果为进一步探索以CO2代替CO作为底物的氮酶激活的非典型费托反应的机理提供了重要基础;此外,它们可以作为未来开发基于氮素的应用的潜在模板,有效地将温室气体二氧化碳回收为有价值的燃料产品。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ChemBioChem
ChemBioChem 生物-生化与分子生物学
CiteScore
6.10
自引率
3.10%
发文量
407
审稿时长
1 months
期刊介绍: ChemBioChem (Impact Factor 2018: 2.641) publishes important breakthroughs across all areas at the interface of chemistry and biology, including the fields of chemical biology, bioorganic chemistry, bioinorganic chemistry, synthetic biology, biocatalysis, bionanotechnology, and biomaterials. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies, and supported by the Asian Chemical Editorial Society (ACES).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信