Boosting thermal conductivity of boron nitride incorporated polymer composites via hydrogen bonding engineering.

IF 12.2 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Wenbo Lin, Yanfeng Li, Xirui Liu, Rui Xu, Jiajing Huang, Zhiyuan Jiang, Zhiguo Qu, Kai Xi, Yue Lin
{"title":"Boosting thermal conductivity of boron nitride incorporated polymer composites <i>via</i> hydrogen bonding engineering.","authors":"Wenbo Lin, Yanfeng Li, Xirui Liu, Rui Xu, Jiajing Huang, Zhiyuan Jiang, Zhiguo Qu, Kai Xi, Yue Lin","doi":"10.1039/d5mh00738k","DOIUrl":null,"url":null,"abstract":"<p><p>Enhancing the thermal conductivity of polymer-based composites is critical for effective thermal management in power electronics. A common strategy involves incorporating high-thermal-conductivity fillers such as graphene and boron nitride nanosheets (BNNS). However, practical enhancements often fall short of theoretical predictions due to interfacial thermal resistance (<i>R</i><sub>Kapitza</sub>). Here, we address this challenge by engineering the hydrogen bond density (HBD) at the filler-matrix interface. By grafting 3,4-dihydroxyphenylalanine (DOPA) onto polyvinyl alcohol (PVA), we synthesized PVA-D<i>X</i> matrices (<i>X</i> = 0, 8, 12, 17, 24) with tunable HBDs. Incorporation of BNNS into these matrices revealed that higher interfacial HBD significantly reduces <i>R</i><sub>Kapitza</sub>, thereby enhancing the composite's thermal conductivity (<i>κ</i><sub>c</sub>). We achieved an exceptionally low <i>R</i><sub>Kapitza</sub> of 0.60 × 10<sup>-8</sup> m<sup>2</sup> K W<sup>-1</sup>, corresponding to a filler effectiveness (<i>κ</i><sub>c</sub>/∅<sub>f</sub>) of 120 W m<sup>-1</sup> K<sup>-1</sup>. Notably, at a BNNS loading of 70 vol%, increasing the interfacial HBD to 2.14 mmol cm<sup>-3</sup> achieves a <i>κ</i><sub>c</sub> of 51.01 W m<sup>-1</sup> K<sup>-1</sup>, which is 1.45 times higher than the 35.29 W m<sup>-1</sup> K<sup>-1</sup> attained at an HBD of 0.5 mmol cm<sup>-3</sup>. This study underscores the critical role of interfacial hydrogen bonding in optimizing thermal transport and provides a robust framework for designing high-performance polymer composites for advanced thermal management applications.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" ","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Horizons","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d5mh00738k","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Enhancing the thermal conductivity of polymer-based composites is critical for effective thermal management in power electronics. A common strategy involves incorporating high-thermal-conductivity fillers such as graphene and boron nitride nanosheets (BNNS). However, practical enhancements often fall short of theoretical predictions due to interfacial thermal resistance (RKapitza). Here, we address this challenge by engineering the hydrogen bond density (HBD) at the filler-matrix interface. By grafting 3,4-dihydroxyphenylalanine (DOPA) onto polyvinyl alcohol (PVA), we synthesized PVA-DX matrices (X = 0, 8, 12, 17, 24) with tunable HBDs. Incorporation of BNNS into these matrices revealed that higher interfacial HBD significantly reduces RKapitza, thereby enhancing the composite's thermal conductivity (κc). We achieved an exceptionally low RKapitza of 0.60 × 10-8 m2 K W-1, corresponding to a filler effectiveness (κc/∅f) of 120 W m-1 K-1. Notably, at a BNNS loading of 70 vol%, increasing the interfacial HBD to 2.14 mmol cm-3 achieves a κc of 51.01 W m-1 K-1, which is 1.45 times higher than the 35.29 W m-1 K-1 attained at an HBD of 0.5 mmol cm-3. This study underscores the critical role of interfacial hydrogen bonding in optimizing thermal transport and provides a robust framework for designing high-performance polymer composites for advanced thermal management applications.

通过氢键工程提高氮化硼聚合物复合材料导热性能。
提高聚合物基复合材料的导热性对于电力电子产品的有效热管理至关重要。一种常见的策略是加入高导热填料,如石墨烯和氮化硼纳米片(BNNS)。然而,由于界面热阻的原因,实际的增强往往达不到理论预测(RKapitza)。在这里,我们通过设计填料-基质界面的氢键密度(HBD)来解决这一挑战。通过将3,4-二羟基苯丙氨酸(DOPA)接枝到聚乙烯醇(PVA)上,合成了具有可调HBDs的PVA- dx矩阵(X = 0,8,12,17,24)。将BNNS加入到这些基质中表明,较高的界面HBD显著降低了RKapitza,从而提高了复合材料的导热系数(κc)。我们获得了0.60 × 10-8 m2 K W-1的极低RKapitza,对应于填充效率(κc/∅f)为120 W m-1 K-1。值得注意的是,当BNNS负载为70 vol%时,将界面HBD增加到2.14 mmol cm-3,其κc为51.01 W m-1 K-1,是HBD为0.5 mmol cm-3时的35.29 W m-1 K-1的1.45倍。这项研究强调了界面氢键在优化热传递中的关键作用,并为设计高性能聚合物复合材料提供了一个强大的框架,用于先进的热管理应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Horizons
Materials Horizons CHEMISTRY, MULTIDISCIPLINARY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
18.90
自引率
2.30%
发文量
306
审稿时长
1.3 months
期刊介绍: Materials Horizons is a leading journal in materials science that focuses on publishing exceptionally high-quality and innovative research. The journal prioritizes original research that introduces new concepts or ways of thinking, rather than solely reporting technological advancements. However, groundbreaking articles featuring record-breaking material performance may also be published. To be considered for publication, the work must be of significant interest to our community-spanning readership. Starting from 2021, all articles published in Materials Horizons will be indexed in MEDLINE©. The journal publishes various types of articles, including Communications, Reviews, Opinion pieces, Focus articles, and Comments. It serves as a core journal for researchers from academia, government, and industry across all areas of materials research. Materials Horizons is a Transformative Journal and compliant with Plan S. It has an impact factor of 13.3 and is indexed in MEDLINE.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信