1,8-Naphthalimide derivatives as small molecules with multi-applications in chemistry and biology.

IF 2.9 3区 化学 Q1 CHEMISTRY, ORGANIC
Sanaullah, Krzysztof Walczak
{"title":"1,8-Naphthalimide derivatives as small molecules with multi-applications in chemistry and biology.","authors":"Sanaullah, Krzysztof Walczak","doi":"10.1039/d5ob00657k","DOIUrl":null,"url":null,"abstract":"<p><p>1,8-Naphthalimide and its derivatives have attracted attention from scientists because of their ease of synthesis, flexible structural modifications, and notable optical properties such as good fluorescence, large Stokes shifts, high quantum yields, unique photostability, and well documented biological activities. This review focuses on the modifications at the imide nitrogen and the naphthalene core of 1,8-naphthalimides through nucleophilic substitution reactions and examines their effect on the chemical, photophysical, and biological properties of these compounds. Furthermore, the wide range of applications of these compounds in the fields of chemistry and biology have also been discussed in detail. In terms of chemistry, their efficient electron transporting capabilities support their use in the development of organic light-emitting diodes (OLEDs) and high performance dyes and as ligands in the synthesis of metal complexes. In the field of biology, their outstanding capabilities in cell imaging and DNA intercalation along with their function as unique fluorescent probes underscores their utility in molecular diagnostics and targeted therapeutics. This review critically examines and bridges the diverse applications of 1,8-naphthalimides and their derivatives across the chemical and biological sciences over the past fifteen years.</p>","PeriodicalId":96,"journal":{"name":"Organic & Biomolecular Chemistry","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic & Biomolecular Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5ob00657k","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0

Abstract

1,8-Naphthalimide and its derivatives have attracted attention from scientists because of their ease of synthesis, flexible structural modifications, and notable optical properties such as good fluorescence, large Stokes shifts, high quantum yields, unique photostability, and well documented biological activities. This review focuses on the modifications at the imide nitrogen and the naphthalene core of 1,8-naphthalimides through nucleophilic substitution reactions and examines their effect on the chemical, photophysical, and biological properties of these compounds. Furthermore, the wide range of applications of these compounds in the fields of chemistry and biology have also been discussed in detail. In terms of chemistry, their efficient electron transporting capabilities support their use in the development of organic light-emitting diodes (OLEDs) and high performance dyes and as ligands in the synthesis of metal complexes. In the field of biology, their outstanding capabilities in cell imaging and DNA intercalation along with their function as unique fluorescent probes underscores their utility in molecular diagnostics and targeted therapeutics. This review critically examines and bridges the diverse applications of 1,8-naphthalimides and their derivatives across the chemical and biological sciences over the past fifteen years.

1,8-萘酰亚胺小分子衍生物在化学和生物学上的广泛应用。
1,8-萘酰亚胺及其衍生物因其易于合成、结构修饰灵活、荧光性好、斯托克斯位移大、量子产率高、独特的光稳定性和文献记载的生物活性等显著的光学性质而受到科学家们的关注。本文综述了1,8-萘酰亚胺类化合物在亚胺氮和萘核上的亲核取代修饰,并探讨了它们对这些化合物的化学、光物理和生物学性质的影响。此外,还详细讨论了这些化合物在化学和生物学领域的广泛应用。在化学方面,它们高效的电子传输能力支持它们在有机发光二极管(oled)和高性能染料的开发中的应用,以及在金属配合物的合成中作为配体。在生物学领域,它们在细胞成像和DNA嵌入方面的卓越能力以及它们作为独特荧光探针的功能强调了它们在分子诊断和靶向治疗方面的应用。本综述对过去15年来1,8-萘酰亚胺及其衍生物在化学和生物科学中的各种应用进行了批判性的审查和衔接。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Organic & Biomolecular Chemistry
Organic & Biomolecular Chemistry 化学-有机化学
CiteScore
5.50
自引率
9.40%
发文量
1056
审稿时长
1.3 months
期刊介绍: Organic & Biomolecular Chemistry is an international journal using integrated research in chemistry-organic chemistry. Founded in 2003 by the Royal Society of Chemistry, the journal is published in Semimonthly issues and has been indexed by SCIE, a leading international database. The journal focuses on the key research and cutting-edge progress in the field of chemistry-organic chemistry, publishes and reports the research results in this field in a timely manner, and is committed to becoming a window and platform for rapid academic exchanges among peers in this field. The journal's impact factor in 2023 is 2.9, and its CiteScore is 5.5.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信